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Demand-point constrained EMS vehicle allocation problems for regions
with both urban and rural areas

Martin van Buuren · Rob van der Mei · Sandjai Bhulai

Abstract Governments deal with increasing health care demand and costs, while budgets are tightened. At
the same time, ambulance providers are expected to deliver high-quality service at affordable cost. Maximum
reliability and minimal availability models guarantee a minimal performance level at each demand point, in
contrast to the majority of facility location and allocation methods that guarantee a minimal performance
that is aggregated over the entire ambulance region. As a consequence, existing models generally lead to
overstaffing, particularly in ‘mixed’ regions with both urban and rural areas, which leads to unnecessarily
high costs. This paper addresses this problem. First, we introduce the concept of demand projection to
give fundamental insight into why this overstaffing takes place. Next, we overcome the overstaffing by the
so-called adjusted queuing (AQ) solution that provides generalizations of the existing models. We provide
mathematical proofs for the correctness of the AQ solution. Finally, to assess the performance of the AQ-
solution we have performed extensive numerical experimentation, using real data from four ambulance
regions in the Netherlands. The results show that in all cases the AQ-solution indeed leads to better
ambulance care than the existing solutions, while reducing staffing cost.
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1 Introduction

Ambulance service providers (ASPs) need to find the right balance between good quality of service and
reasonable costs. Hence, they are interested in what the best locations for ambulance bases are, and what the
optimal number of ambulances is for each of these bases. Overcapacity of ambulances leads to unnecessarily
high costs, while extensively reducing the costs can lead to dangerous situations. Many facility location and
allocation problems address this trade-off.

Most systems try to catch the performance of an ambulance region in a single value, e.g. by calculating
the fraction of late arrivals aggregated over the entire ambulance region for a duration of one year. When
maximizing this covered fraction, it may lead to low coverage in rural areas in favor of densely populated
cities. We call them the regional coverage location problem (RCLP) class of models; a name that stresses
the regionally aggregated key performance indicator.

Another approach is to evaluate the performance of each district in the region individually, and satisfy
at least a minimal required performance threshold that is set for each district in the best possible way. This
can be achieved by giving a minimal performance constraint to every district. Either this means to find
an ambulance allocation to satisfy the requirement for the best possible subset of districts when limited
resources are available (maximal availability), or to determine the minimal number of ambulances and the
resulting allocation such that the minimal requirement for every district is satisfied (minimal reliability).
This lead tot the maximum availability and minimal reliability (MR-MA) class of models. Our paper has
its focus on this class.

Currently RCLP is mostly used in practice, although we note an emerging balance shift in favor to
MR-MA. Erkut, Ingolfsson, and Budge [?] wrote in what they call a critique on the MR-MA models that
“the objective functions of the models in this class are not the same as the expected coverage performance
measure that typically drives EMS system design”. This is still a valid argument though it loses its strength
as time goes on. The trend shift from ambulance practice moving away from purely focussing on this RCLP
class objective is due to pressure from local intraregional governments. Although the key performance
indicator for the regions that we consider in the results section in practice still is the fraction of calls
covered within a time threshold of 15 minutes measured on a yearly basis, they have to deal with multiple
mayors of rural municipalities in their region who insist on a minimal coverage for their own population.
As a result, every district (or: municipality) within the safety region must also receive coverage under a
minimal reliability constraint. The current MR-MA models in literature are not suited for regions that have
both rural and urban areas. The practical need for MR-MA models that are suitable for these so-called
mixed regions provide the motivation for this research.

The existing high-end MR-MA models in literature Q-PLSCP and Q-MALP [?,?], throughout this paper
referred to as the Q-models, are made for regions where the demand is fairly homogeneously spread. If they
are applied to actual regions with inhomogeneous demand - against their original design - they generally
lead to over-estimations for the required number of vehicles [?,?]. In that case, as a consequence, ambulance
providers have an unnecessarily high cost.

In this paper we propose a new MR-MA approach that is applicable to regions with urban and rural
demand. Our approach is based on many concepts that can be found in the Q-models, to such an extend
that we call our approach the adjusted queuing solution.

The present paper can roughly be divided in three parts. First we provide an in depth explanation of
why the over-estimation takes place when Q-models are directly applied to mixed regions (Sections 3–4).
Secondly, we propose the adjusted queuing solution that leads to credible results (Sections 5–7). Third, we
show that our proposed adjusted queuing solution leads to credible results for four actual mixed regions
(Section 8). We use the maximum reliability model Q-PLSCP for illustration purposes throughout the
current paper, although the findings are not limited to this model.
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The adjusted queuing formulation AQ-PLSCP improves on Q-PLSCP as follows.

– Q-models tend to project urban demand to rural areas that may lead to major local overstaffing in rural
areas. The adjusted queuing approach that we propose solves this problem, leading to better staffing
for these rural areas.

– Contrary to Q-models, we allow for major differences in demand and service time.
– In AQ-models, the required reliability or availability level is demand point dependent instead of a system

wide constant.

We provide mathematical proofs that the adjusted queuing approach works. Existing papers use sim-
ulation studies to illustrate that their method work [?,?]. Because the models in these papers are special
cases of AQ-models, our paper also includes mathematical proofs of these models.

The remainder of this paper is as follows. In Section 2 we give an extended literature review on the
line of models that leads to the Q-models. Section 3 starts with some definitions and assumptions on the
ambulance practice, and it provides a detailed description of the Q-PSCLP model that is required later on
in the paper. We show in Section 4 why the Q-models give over-estimations on the number of ambulances
needed in an ambulance region. In Section 5 we replace the main assumption of previous models with the
more general workload condition. In Section 6 this workload condition is used to give a solution to the
over-estimation. Section 7 proposes the new adjusted queuing model formulation for PSLCP. In Section 8
we compare results of the Q-PLSCP model to those of AQ-PLSCP for four actual ambulance regions, and
we show that the AQ-models lead to useful results. Section 9 contains the conclusion and gives advise for
future research. Appendix A contains a convenient overview of all variables and their meaning used through
the paper. The proofs of all theorem, lemmas, propositions, properties and corallaries are bundled in the
Appendix B.

2 Literature review

This section starts with an overview on the RCLP class of models. Thereafter we describe the MR-MA
models on which our research elaborates. We end this section by mentioning a few other related research
topics in the field of emergency medical services (EMS) logistics.

The RCLP model maximum expected coverage location problem (MEXCLP) by Daskin (1983) is
amongst the first that link EMS facility location to the stochastic nature of EMS logistics [?]. MEX-
CLP is based on the deterministic Maximal Covering Location Problem (MCLP) by Church [?]. The latter
positions a given number of ambulances such that the demand that is covered at least once is maximized.
Earlier models all have a deterministic nature. Many papers can be found in literature that are in some
sense extension of MEXCLP. The notion of double coverage is introduced much later in the backup coverage
problems (BACOP) [?] and the double standard model (DSM) [?]. A fleet with multiple vehicle types can
be found in the TEAM and FLEET models that are based on MCLP. [?]. The combination of TEAM and
MEXCLP can be found in the two-tiered model (TTM) [?]. The MOFLEET model combines MEXCLP
and FLEET. A time-dependent version of MEXCLP [?], TIMEXCLP runs MEXCLP once for every time
interval [?]. More recent, Rajagopalan et al. [?] try four multiple meta-heuristic search methods to find
good solutions in the case MEXCLP becomes hard to solve.

The MEXCLP is an IP-formulation that maximizes the expected covered demand. There is a constant
system wide parameter q ∈ [0, 1] stating the probability that an ambulance is not available. Every ambulance
in the system is assumed to have the same probability of being unavailable. Given the number of ambulances
that can reach this demand point within the time threshold, the binomial distribution gives the probability
that at least one ambulance can cover this demand point. Multiplication by the weight of the demand
point, e.g. demand or the population density, yields the expected population covered at this demand point.
Summation of this expected value over all demand points gives the maximized expected coverage over the
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entire region. MEXCLP places a fixed number of ambulances in such a way that the expected coverage
is maximized. This method has two major disadvantages that other newer methods still inherit: 1) Many
regions have both rural and urban areas. A constant system wide busy fraction q for each ambulance is
not realistic because demand points with less demands will most likely have a lower busy fraction. 2) Rural
areas have a lower population density, so the method decreases coverage in rural areas in favor of densely
populated urban population. Major differences in ambulance care between a region’s population can occur.
From an equity perspective this may be deemed unfair. For further work on fairness in EMS logistics see
Chapter 5-6 of Jagtenberg (2016) [?].

The MR-MA class of models has a completely different approach at which a minimal local coverage
performance level is set for every demand point. Minimal reliability guarantees that every demand point
has the minimal required coverage, and minimizes the total number of ambulances in the system to achieve
this. Maximal availability swaps these objective function and constraints, thus allocating a fixed number of
ambulances in such a way that a maximal demand is covered under the minimal reliability threshold. The
Location Set Covering Model (LSCM) by Toregas (1971) is the first minimal reliability model that optimizes
the number of facilities such that each demand point can be reached by at least one ambulance within a
given response time threshold [?]. The Maximum Availability Location Problem (MALP) by Revelle and
Hogan (1989) is the first maximum availability model [?]. A demand point is covered when the probability
that it can be reached within the response time (or distance) threshold by at least one ambulance exceeds
a constant α. In the first MALP model there is a system wide busy fraction for the ambulances used,
and a Bernoulli approach similar to MEXCLP calculates for each demand point the minimal number of
ambulances that is required to satisfy the required minimal required coverage probability constraint. MALP
allocates a fixed number of ambulances in such a way that the total covered demand is maximized. In the
same paper an extension is proposed where the ambulance’s busy fraction depends on the demand point.
The Reliability Perspective (Rep-P) by Ball and Lin [?] poses an upper bound on the reliability of every
demand point, and it ensures that every demand point i is covered by a minimal reliability level that can
be set for each demand point separately. Borrás and Pastor [?] adapt MALP and Rel-P in such a way that
the busy fraction of each base location depends on a preference list that each demand point holds. This way
the busy fraction becomes more realistic, and the authors show that it leads to a reduction in the number
of vehicles. Sorenson and Church (2010) combine in the LR-MEXCLP the maximal coverage objective of
MEXCLP with the reliability constraints of MALP [?]. They do this by not using the boolean coverage
constraint by demand point but rather use a slope with the reliability by which a demand point is covered.
The PLSCP model updates Rel-P in such a way that the busy fraction of a demand point depends on the
number of available servers [?].

Q-PLSCP and Q-MALP by Marianov and Revelle are the queuing versions of PLSCP and MALP [?,?].
Instead of a binomial approach, they use an Erlang B formulation. Our AQ-models extend these models;
see Subsection 3.4. Subsection 3.4.1 describes the difference in assumptions and outcomes between the
binomial approach and the queuing approach, because the literature is rather limited on the subject.

Larson [?] describes a hypercube model that can be used to evaluate the choice of base locations and
ambulance allocation. Since he uses Poisson arrivals and exponential service times, this is a Markov process.
The name hypercube refers to the state of the set with ambulances, where each vehicle can be available or
busy. Various extensions on this model are provided in the literature [?,?,?,?,?].

Good reviews on EMS facility location are available; see Marianov and Revelle (1995), Brotcorne et al.
(2003) and Li et al. (2011) [?,?,?]. Facility location and staffing takes place in the strategic and tactical
domain of EMS. Golberg [?] discusses the properties, advantages, and disadvantages of the various models
in his recent review paper.

At the operational level dynamic ambulance management (DAM) is widely used [?,?,?,?,?,?,?,?,?,?,?].
Sometimes simulation tools are used to validate models. An extensive review on simulation models in EMS
can be found in Aboueljinane (2014) [?]. DAM relocates available ambulances in such a way that the regions
coverage stays optimal.
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In this paper the TIFAR-framework in combination with Coin-OR is used for implementation [?,?].

3 Preliminaries: definitions, assumptions and previous model formulation

In this section we start by giving the definitions used throughout the paper. Next, we discuss the assumptions
on the ambulance practice. Since the queuing approach for ambulance allocation models is not generally
known, we share the differences between this approach and the binomial approach found in many papers.
This section ends with a detailed description of the Q-PLSCP model that is our baseline for illustration
purposes.

In the next section we show why the current implementation of the queuing approach, like Q-PLSCP,
yields over-estimations when they are naively applied to mixed regions, and the remainder of this paper is
dedicated to finding and proving a solution.

3.1 Definitions

Figure 1 illustrates the stages of the emergency medical service (EMS1) process, which holds the majority
of definitions we use in this paper.

c c c c c c c c- - - - - - -
1 2 3 4 5 6

Call enters
the system

EMS team
receives call

on their pagers

EMS vehicle
departs to

incident location

EMS vehicle
arrives at

incident location

EMS vehicle
departs to

patients destination

EMS vehicle
arrives at

patients destination

EMS vehicle
is called free
and returns

to base
EMS vehicle
arrives at

base location

CCT� - CHT� - DTI� -

Service time� -

PTD� -
TMT� - DTH� - TFT� - DTB� -

Response time to incident� -
Response time to hospital� -

Fig. 1 The trace of call statuses and the corresponding time intervals.

When a call enters the system, the dispatcher at the emergency medical call center (EMCC) performs
a triage procedure, and, if required, dispatches an ambulance. The duration in which these two processes
are done is the so-called call center time (CCT). When the pagers of the emergency medical technicians
(EMTs) are activated at dispatch, some time passes before the ambulance starts moving, since they have
to get to the vehicle. This time period is called the chute time (CHT). The entire duration from a call
entering the system until the ambulance starts moving is called the pre-trip delay (PTD).

The next stage is the driving time to incident (DTI), which is followed by the treatment time (TMT).
In some cases, the patient is treated at the incident location after which the ambulance returns to the base
location. In other cases, the patient is brought to the hospital. We call this time interval the driving time
to hospital (DTH), after which we have a transfer time (TFT) that bridges pre-hospital care with hospital
care. Sometimes the transfer time is called the turn-around time. The last stage of the ambulance trip
consists in driving back to its base location (DTB).

1 A list with abbreviations and variables is located at the end of the document in Table 9.2.
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For basic live support (BLS) transport, and occasionally for advanced life support (ALS) transport,
the incident location is a hospital and the destination may be another hospital or a home address. Since
our main focus is on ALS transport with random arrivals, we keep respecting these definitions, even if the
patient’s destination is not a hospital.

There are two response time thresholds used in the daily life of emergency medical services. First we
have the response time to incident that starts from the moment the call enters the system, and it ends when
the ambulance arrives at the patient. The response time to hospital is mainly used for medical outcomes
and is not further used in this paper. When we write response time in this paper, we always refer to the
response time to incident.

The service time is the during which an ambulance is busy and cannot respond to a newly incoming
incidents. This starts when the EMS team receives a notification from the dispatch center, and it stops
when the ambulance arrives back on its base location. Note that some authors define the service time as
the moment that the EMS vehicle becomes available at the hospital. The choice that ambulances become
available at their base location guarantees that rural demand points at the region borders directly receive
coverage when an ambulance becomes available again, since hospitals are most often located in urban areas.

3.2 Assumptions

Incidents only occur at so-called demand points. The number of demand points should be large enough to
give an adequate representation of the region, but small enough to perform calculations within acceptable
time. Postal code areas with several thousand inhabitants are a good candidate for a demand aggregation.

We have a fixed and bounded set of demand points, potential base locations, and hospitals in each
ambulance region. These locations are all assumed to be known a priori. A variant of our models gives the
model free choice of base locations: it makes every demand point a potential base location. Every demand
point can be reached by at least one potential base location within the response time threshold. We assume
that a region contains at least one hospital in the system.

Arrivals occur according to a Poisson process. For every demand point the frequency of incident arrivals
is given. There is only one urgency class, and there is one type of ambulance that can handle all calls.
The service time may depend on the incident location, base location, and ambulance allocation, and it is
determinable and finite for all calls.

PTD, TMT, and TFT are assumed constant in this paper. These parameters have a finite value that is
the same for every call. The driving times DTI, DTH and DTB are finite and deterministically determinable
through a lookup table or by navigation software. Travel times are assumed to be symmetric, i.e. swapping
origin and destination of one route has no effect on the driving times.

Once assigned to a base location, the ambulance starts and ends every service on its base location.
There are no relocations of ambulances between base locations. Every hospital has an unlimited capacity
and any patient can be brought to any hospital. When necessary one can include ramping, i.e. the waiting
duration until the hospital’s emergency department (ED) has free space, by including its mean time in the
TFT.

Any call that does not receive immediate service from an available ambulance within the given response
time standards is lost. There is no queue for waiting calls. In practice, a lost call is either served by a
neighboring ambulance service provider or by another base location that has capacity.

For the Q-models the assumption is required that ambulances from base locations that have an overlap
in demand points do not have major differences in call arrival rate, mean service time and minimal reliability
level. This assumption is not required for the proposed AQ-models.
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3.3 Variables

Let H be the finite set of hospital locations, let I be the finite set of demand points, and let J be the finite
set of potential base locations, such that H, I, and J are disjunct sets. If a demand point is located at the
same location as a hospital, we add two elements with the same coordinates; one for set H and one for I.
The three sets are not empty. Denote V := H ∪ I ∪ J .

Denote the shortest minimal driving time from point k ∈ V to point ` ∈ V by tk`. Recall that symmetric
driving times are assumed, thus tk` = t`k. We denote the response time to incident

rij := PTD + tji, ∀ i ∈ I, j ∈ J . (1)

If rij ≤ R we say that i is covered by j, for a constant system wide response time threshold R ∈ R≥0.
For each demand point i ∈ I we require a reliability level of at least αi ∈ [0, 1], i.e. the probability that

an ambulance is available to reach a patient within R time units must be at least αi. A typical value one
can take is αi = α = 0.95 for all demand points i ∈ I.

The total number of ambulances in the system is denoted by Z as this is the variable we want to
minimize, and the variable xj ∈ R≥0 denotes the utilized capacity of potential base location j ∈ J . The
utilized capacity of a potential base location is the number of ambulances that are allocated to this base.

For each demand point i ∈ I, we denote the call arrival frequency by fi ∈ R≥0. This is the number of
calls per time unit that enters the system at this demand point.

The mean service time of a demand point is the average time an ambulance is busy to a call that takes
place at that demand point and therefore is not available for dispatch to a new incident. If a patient at
demand point i ∈ I is served by an ambulance that departs from base location j ∈ J and brought to
hospital h ∈ H, the mean service time for a call, βhij , is defined by

βhij := rij + thi + thj + TMT + TFT − CTT. (2)

Denote the set of demand points that can be reached, i.e. have a response time to incident within R time
units from i ∈ I by Ni := {i′ ∈ I | rii′ ≤ R}, throughout referred to as the neighborhood of demand point
i. We can interpret this as the set of all demand points that would be covered if there were a base location
collocated to i. For the demand points near a base location we make use of the set Nj := {i′ ∈ I | rji′ ≤ R},
i.e. the set of demand points that can be reached from base location j. Similarly for the base locations near
demand points or base locations, define Mi := {j′ ∈ J | rij′ ≤ R}.

3.4 The queuing approach

In Subsection 3.4.1 we compare the Erlang blocking approach used in the Q-models to the binomial approach
that is used in PLSCP and MALP. The authors of the Q-models show with computational results that these
models require less ambulances than PLSCP and MALP for the same coverage constraints. This section
considers a theoretical point of view and discusses the advantages and disadvantages of both approaches,
and conclude that generally the queuing approach is the better one when all its assumptions can be satisfied.
Subsection 3.4.2 describes Q-PLSCP in detail, as we use this model in our illustrations.

3.4.1 Comparison between the binomial and queuing approaches

In literature we encounter two approaches to calculate blocking probabilities in facility location and allo-
cation problems: the binomial and queuing approaches. In this subsection we compare the two approaches
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1
2

(R− PTD)

Fig. 2 Island model with only one base location j (•). Every demand point i ∈ I (◦) can reach every other demand point
within the response time norm.

for a toy example: the island model. Existing literature is rather limited on this subject. This comparison
provides the motivation why we continue research on the queueing approach instead of the binomial.

Consider an island with one base location j ∈ J , which covers the entire island, i.e. |J | = 1. Particularly,
this base location is not influenced by other base locations; see Figure 2. This means that Mi is the same
singleton for all demand points i ∈ I. Also the arrival frequency fi for each demand point i ∈ I is given,
and thereby the total demand that must be served by ambulances that are stationed at base location j.
Arrivals are independent and require service from one ambulance. The last assumption we make for this
island is that every demand point can reach every other demand point within the response time to incident
constraint, i.e. Ni = I for all i ∈ I. The island contains one hospital and differences between the travel
times are assumed negligible compared with the mean service time of a call, hence we take βi = β constant.
We assume that the reliability level requirement is constant: αi = α for all i ∈ I.

We take a number of ambulances Z = xj at j ∈ J and calculate the blocking probability for each ap-
proach, under the assumption that any call that cannot be immediately assigned to an available ambulance
is lost.

Binomial Approach The binomial approach uses a fixed busy fraction q for every ambulance, that may
be based on historical recorded data. Under this assumption, the probability that an ambulance is not
available at call arrival is q. Hence, the probability that none of the ambulances at this base is available is
given by the following probability:

PBin(No ambulance is available) = qxj . (3)

When determining the required number of ambulances such that a reliability level of at least α is met,
we obtain a constraint of the form 1 − qxj ≥ α. Taking bBin := log(1 − α)/ log(q) yields xj ≥ bBini . Thus
we get constraints of the form ∑

j∈Mi

xj ≥ bBini , ∀i ∈ I. (4)

The general assumption of the binomial approach is that the busy fraction of an ambulance is near-
constant, and thereby that the number of available ambulances is a good approximation to handle the
average ambulance busy fraction. When using the binomial approach for a realistic situation with multiple
base locations an IP-formulation fits the number of ambulances to an acceptable workload.
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Queueing Approach The queuing approach uses the Erlang B blocking formula for a M/G/c/c-loss system
with Poisson arrivals, general service time distribution with finite mean and a server pool with a fixed
number of servers, under the assumption that calls that cannot be directly served are lost. We denote the
arrival rate for each demand point i as the sum of the frequencies of demand points in its neighborhood:
λi =

∑
i′∈Ni

fi′ . Because of the small isolated area we consider λi equally valued for every demand point.
We also need the mean service time β for an ambulance serving i ∈ I.

Assuming Poisson arrivals with rate λi, a mean service time β, and bErli ∈ N ambulances in the vicinity
of i ∈ I, the Erlang B blocking function gives us the constraint for the minimal service level αi for each
i ∈ I:

ErlangB(λi, β, b
Erl
i ) =

(λiβ)
bErl
i

bErl
i !∑bErl

i

k=0
(λiβ)

k

k!

≤ 1− α. (5)

Knowing λi, β, and α for each i ∈ I, we can determine the minimal value for bErli that is required to
meet this constraint. In the island model bErli has the same value for all demand points. We should keep
in mind that generally a per demand point βi can depend on the hospital and base locations, and on the
ambulance allocation xj , j ∈ J . The island model has xj = bi = Z for all i, j. In Definition 2 of Section 5
we use another yet equivalent definition. Note the relation with the binomial approach: q = qi = β/(biλi).

This leads to the same family of constraints as the binomial approach, but with a different calculated
value for bi: ∑

j∈Mi

xj ≥ bErli , ∀i ∈ I. (6)

Differences Between Approaches The main difference between the two approaches is that the queuing
approach does not consider the busy fraction as an input parameter. By taking the busy fraction as an
input parameter the binomial approach has an unwanted side effect. To show, we construct an example
where the island has only one demand point. The busy fraction is kept fixed. In practice, when ambulances
are added to the base location the busy fraction for each ambulance decreases as the workload gets shared
between the ambulances. This does not happen in the binomial approach; instead we observe a strange
effect. By keeping the busy fraction q fixed as the number of ambulances x increases, the binomial approach
indirectly assumes that either the number of incoming calls λ or the mean service time β, or both, increase
when more ambulances to a base location are added. This contradicts the fact that the number of incoming
calls and mean service time are fixed input parameters. Especially at rural bases with low demand, such
as one or two ambulances, adding an extra ambulance has a significant impact on the busy fraction of
ambulances that are allocated at that base, which is not adequately incorporated in the binomial approach.
This effect becomes smaller when more ambulances are allocated to the base locations. Therefore the
binomial models provide credible results when many vehicles are required per base locations, that is, at
highly populated areas.

When an ambulance region has both urban and rural areas the binomial approach may not be the best
choice. In practice, in the case of a constant system wide reliability level, the busy fractions of ambulances
positioned at a rural base location are much lower in contrast to ones at urban base locations. In the
queuing approach this effect is incorporated through Erlang B. However, by design, the Q-models may not
be applied to mixed regions because their demand may not significantly fluctuate. What happens if you
apply the Q-models is discussed in detail in Section 5.

The binomial approach is a better choice in the case that the arrival process cannot be modeled by a
Poisson process, or when every potential base location has many ambulances allocated such that adding or
subtracting one ambulance does not have a significant impact on the busy fraction.
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It is straightforward to change a binomial methods to their queuing counterpart, since they only differ
in the way bi, i ∈ I, is calculated.

We conclude that Erlang blocking formulations are preferred over the binomial choice in maximum
reliability and availability models when all model assumptions can be satisfied.

3.4.2 Queuing Probabilistic Location Set Coverage Problem

The Queueing Probabilistic Location Set Coverage Problem (Q-PLSCP) [?] is a maximal reliability model
that minimizes the total number of ambulances in an ambulance region such that the minimal reliability
level requirements are met for all demand points. This is done in two phases: the first calculates right hand
side values for the constraints of a mixed integer program (MIP), and the second phase solves the resulting
MIP.

This model needs an extra assumption, the so-called isolation assumption, such that a neighborhood
can be considered as an isolated problem, which is a requirement for the application of Erlang B. Every
neighborhood gets a number of ambulances bi ∈ N, i ∈ I assigned. In the case that all bi ambulances in
Ni are busy, ambulances from bordering neighborhoods can respond. Similarly, ambulances from bordering
neighborhoods may receive assistance from ambulances of Ni. Because there are minor differences between
bordering neighborhoods in the call arrival rate, mean service time, and reliability level, the influx and
outflux cancel out. Thus each individual neighborhood may be treated as an isolated area; this is the
isolation assumption. The average number of assigned ambulances that is available or serving calls in Ni is
on average close to bi.

Independent Poisson arrivals are assumed for each demand point, with arrival rate fi ∈ R≥0 for all
i ∈ V . The service time duration is taken constant at β time units for all calls, and the reliability level α
is a fixed system wide constant. The arrival rate in neighborhood Ni is given by λi =

∑
k∈Ni

fk. Because
values for λi, β, and α are determined or given, the Erlang B formula provides a lower bound on the number
of required ambulances bi ∈ N to Ni:

bi = argminn∈N≥0
{1− ErlangB(λi, β, n) ≥ α}. (7)

Due to symmetric travel times, the number of ambulances in neighborhood Ni equals the number of
ambulances that can reach demand point i ∈ I from their base location. Thus it poses a constraint of the
form

∑
j∈Mi

xj ≥ bi to every demand point, which concludes the first phase.
In the second phase an integer program is solved to ensure that every neighborhood gets coverage by

at least the minimal number of required ambulances.

min Z =
∑
j∈J

xj

s.t.
∑
j∈Mi

xj ≥ bi, ∀i ∈ I

yi ∈ N≥0.

After solving the IP-formulation xj holds the number of ambulances allocated to base location j ∈ J , and
Z equals the total number of ambulances in the ambulance region.

The authors chose a service time of β = 45 minutes [?]. The frequency fi is taken proportional to the
population at i ∈ I. Instead of a travel time constraint, they took an action radius from the base location
of R̃ = 1.5 miles. The tilde is added to stress the unit change from time to distance. Along the lines of
earlier thoughts, this leads to a set of reachable demand points Ñi = {i′ ∈ V | dist(i, i′) ≤ R̃}. The total
demand at neighborhood Ni then becomes λi =

∑
k∈Ñi

fk.
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The authors give the proof that the Erlang B approach works for exponential service times, although
their result is just as valid for general service time with determinable expectation; see the Queueing Ap-
proach in Subsection 3.4.1. Their method is much stronger than suggested by the paper.

4 Motivation: the cause for over-estimation of current queuing approaches in mixed regions

It is generally agreed that maximum reliability and availability methods yield over-estimation if they
are applied to mixed regions. The effect is mentioned in [?] at multiple occasions, and computational
comparisons with other facility location methods that show the over-estimation can be found in [?,?] and
computations in our result section. We must state that the Q-models are originally not designed to be used
in mixed regions.

This section tells us what goes wrong if we do apply Q-models to a mixed region, against their original
design, and provides motivation to the search direction of the solution that we pursue in the next three
sections. In Section 5 and Section 6 we address and solve the problems found in this section. Section 7
combines these insights and proposes the adjusted queuing models, e.g. AQ-PLSCP. Section 8 provides
computational results that show that the AQ solution indeed solved these over-estimations.

Recall that Q-PLSCP consist of two phases. The first phase calculates the values of bi that hold a lower
bound on the required number of ambulances in the neighborhood of i ∈ I, and in the second phase the
methods solve an IP-formulation that provides the ambulance allocation. Recall that the first phase is equal
in both methods. We show that the over-estimation is mainly caused in the first phase for regions with
varying demand.

We illustrate the over-estimation using two separate situations. In Subsection 4.1 we take a realistic
situation and show why Q-PLSCP yields an over-estimation. Subsection 4.2 gives a theoretical example
that demonstrates that the so-called demand projection effect can result in an over-estimation of any extent.
The solution is presented in the next two sections.

4.1 Illustration for a real situation

In this subsection we highlight the small village of Watergang (just north of the city Amsterdam), a
population of 405 people. Figure 3 illustrates that this approach results in too much ambulances that are
required to cover most rural neighborhoods, up to five ambulances near Watergang. After applying our
proposed adjusted queuing solution, we see that only one ambulance is sufficient for this village.

In our calculation, we took the average demand at each demand point between 10:00 and 12:00 AM on
working days measured over a period of 5 years, with αi = .95 and βi calculated from the nearest actual
base location to the nearest actual hospital with an emergency department for each demand point i ∈ I.

The source of these large numbers can be found in the approximation of the arrival rates λi rather than
in the mean service times βi, i ∈ I.

If the current queuing approaches are used for this region, NWatergang contains many demand points of
the nearby cities of Amsterdam and Purmerend. Consequently, the arrival rate at Watergang’s neighborhood
λWatergang =

∑
k∈NWatergang

fk is not representative for the demand point Watergang itself because the

arrival rate of neighborhood Watergang is dominated by urban demand, and so is the value bWatergang.
Because Purmerend is the only base location that can provide coverage to Watergang, the IP-formulation
in the second phase of Q-PLSCP shows that base Purmerend gets xPurmerend ≥ bWatergang ambulances
allocated.

We have shown that base Purmerend provides coverage for non-existing demand that is projected from
Amsterdam onto Watergang. We call this effect demand projection. In general, we see that the same effect
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Fig. 3 Required coverage bi for each demand point i ∈ I without (left) and with (right) frequency adjustment. The
neighborhood NWatergang is shaded for both methods.

can occur for all rural base locations that have a driving time between R and 2R from a large enough city’s
border.

The underlying cause is that the isolation assumption says that there may no major fluctuations of
demand between the region’s neighborhoods when you apply Q-PLSCP. This is not realistic for ambulance
regions in reality as demand fluctuations occur everywhere. The ‘faulty’ use of the Q-models to the mixed
region in this illustration provides insight what to do next. To make the Q-models applicable to mixed
regions, the isolation assumption of the Q-models needs to be replaced by a mathematical structure that
allows for major fluctuations. This structure is the workload condition that is introduced in Section 5. Next,
using this workload condition, we can redefine the way the arrival rate of in neighborhood is calculated
such that demand projection cannot occur, see Section 6.

4.2 Theoretical example

This theoretical example shows that demand projection, being the over-estimation effect of rural areas, can
be extended to any magnitude. We show this effect for Q-PLSCP.

To study this effect, we consider a one-dimensional scenario with five demand points, of which the first
three, A,B, and C, are in an urban area and the latter two, D and E, are rural. At the locations of central
urban point B and outer rural point E are potential base locations; see Figure 4.

Our focus during the remainder of this scenario lies on the arrival rates, therefor we take the service
time and reliability level system wide constants: β = βi and α = αi for all i ∈ I. Hence, the minimal
required staffing bi through Erlang B only depends on the arrival rates λi, i.e. bi = bi(λi) for all i ∈ I. The
scenario has driving times rAB = rBC = rDE = R − PTD − ε and tCD = 2ε for a small enough constant
ε ∈ R>0, and an allowed response time threshold of R ∈ R>ε minutes.
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The scenario is designed such that MA =MB =MC = {B} and MD =ME = {E}.

cA
City

sB
City

cC
City

cD
Farm

sE
Village

� -R− ε � -R− ε � -2ε � -R− ε

Fig. 4 Our theoretical region with urban and rural demand points. Filled points also have both demand and a base.

The substitution of λi =
∑
i′∈Ni

fi′ yields bA = bA(fA + fB), bB = bB(fA + fB + fC), bC = bC(fB +
fC + fD), and bD = bD(fC + fD).

In a desirable situation Q-PLSCP allocates ambulances such that demand of A, B, and C is covered by
base B, and demand of D and E is served by the ambulances at base location E. Particularly, we do not
want to staff base location E for any urban demand.

This fails if fA = fB = fC = M , fD = ε′, and fE = 1 for small enough ε′ ∈ R>0 and a large enough
M ∈ R>ε′ . After all, xE = max(bD(M+1+ε′), bE(1+ε′)) = bD(M+1+ε), which is approximately bD(M).
However, we wish that our method returns a staffing of bD(1) for base location E. The demand projection
of the urban demand point C onto demand point D results in an order of magnitude too high staffing at
base location E, while demand point C is not even within reach of base location E. This is exactly the
effect that causes major over-estimation in the Q-models for realistic regions.

Define the outer region Ui ⊆ I of demand point i ∈ I by the set of demand points that cannot be
reached within time threshold R from i, but that can be reached within R time units by a demand point
that can reach i within time threshold R, i.e. Ui := {i′ ∈ I : ∃i′′ ∈ I, ri′′i′ ≤ R, ri′′i ≤ R, ri′i > R}. A good
approximation of the outer region is the set of demand points that are contained in a torus with center i
and a radius between R and 2R. In our example UB = {D} and UE = {C}. We define the outer region of
a base location Uj ∈ I, j ∈ J similarly: Uj := {i′ ∈ I : ∃i′′ ∈ I, ri′′i′ ≤ R, ri′′j ≤ R, ri′j > R}.

The number of ambulances allocated to a potential base location is only too high when the so-called
density in the outer region of that base is significantly higher than any of the densities in the inner region
Ni of that base. Various choices for the definition of the density of a demand point ψi can be made. For
example: the density ψi of a demand point may be the population divided by the area that is mapped onto
demand point i, or one may choose to define the density as the frequency fi while assuming a constant
area for each demand point. The example in this subsection uses the latter option, leading to ψi = fi for
all i ∈ I. In general we assume that demand points with a higher density also have a higher performance
requirement: if ψi ≤ ψi′ then αi ≤ ψi′ for all i, i′ ∈ I.

This can also be seen as follows: Fix all variables in our example except for the frequency at demand point
D. Observe the staffing at base location B: xB = max(bA(fA+fB), bB(fA+fB+fC), bC(fB+fC +fD)) =
max(bA(2M), bB(3M), bC(2M+fD)) = max(bB(3M), bC(2M+fD)). Only when fD exceeds M it can have
an unwanted influence by unnecessarily increasing bB .

We conclude this section with the following statements. Only if any demand point i′ ∈ I in the neigh-
borhood Nj of base location j ∈ J has a demand point i′′ ∈ Ni′ in its own neighborhood that is not in the
neighborhood of base j itself, and if the density ψi′′ is significantly higher than the density ψi of any demand
point i ∈ Nj in the neighborhood of j, an overstaffing at base location j ∈ J is achieved through demand
projection. Consequence 1: if the density of any demand point in Uj significantly exceeds the density of all
demand points in Nj , then base j ∈ J gets overstaffed through demand projection. Consequence 2: if all
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demand points in Nj have at least the density of all demand points in Uj , there will be no overstaffing at
base j ∈ J .

4.3 Some words on differentiating the reliability level in the Q-models

It the Q-models it is not trivial to implement a differentiation of the reliability level, that is, having a
parameter αi, i ∈ I, that significantly differs for bordering neighborhoods. The reason is that the isolation
assumption of the Q-models loses its validity when one does.

Key element is the Erlang blocking formula for an M/G/s-loss system Erlang(λ, β, b) ≤ α where b
represents the number of servers (ambulances). Recall that in these models λ, β and α are input parameters,
and the minimal value b for which the inequality is satisfied is the output parameter. For the isolation criteria
to hold, the inflow and outflow over a neighborhood’s border to adjacent neighborhoods must cancel out.
Hence, both λ, β and α should be treated equally. If one of the three fluctuates while the other two are
kept stable, it results in a non-zero flux over a neigborhood border. Thus α should also be stable across
bordering neighborhoods for the isolation criteria to hold.

More in line with literature, likewise to the call arrival rate, one could say in Q-PLSCP and Q-MALP
that one allows for αi demand point dependent where αi does not differ to a significant extent from the
reliability levels of the neighborhoods that border i. Such a small difference may not be manageable from
an administrative point of view. In literature we see that α does not vary over i [?,?].

4.4 Concluding: necessary changes to the Q-methods for application to mixed regions

There are two challenges that must be addressed and solved to allow MR-MA models to be applied on
ambulance regions with both urban and rural areas:

Challange 1 The isolation assumption for a neighborhood should be generalized and made more explicit.
In areas with both urban and rural demand the isolated neighborhood assumption is not
realistic, in particular, the case when an urban located base location covers rural areas near
the city that has no closer base locations, or when larger base locations are located near a
neighborhood’s border. A generalization of this condition is handled in Section 5.

Challange 2 We need a new neighborhood definition such that demand projection cannot happen. The
solution, and the resulting adjusted Q-PLSCP formulation is discussed in Section 6.

5 Solution to Challange 1: generalization of the isolation assumption

Section 4 showed that the demand projection effect can cause over-estimation on the required numbers of
ambulances to any extent when Q-PLSCP is applied to a mixed region. This section discusses an approach
that can replace the isolation assumption that was introduced in Section 3.4: the workload condition.
Another advantage of the workload condition is that it allows for a demand point dependent reliability
level requirement αi instead of a system wide constant.

From a theoretical point of view, not necessarily all ambulances atMi must be able to serve demand at
i ∈ I. Recall that the concept of neighborhoods Ni is only used to get a notion of the workload if i would
be the only base location within a response time radius of at most R.

Definition 1 We introduce the following notations:
a) Denote the set of ambulances in the system by A.
b) Denote the set of ambulances that serve demand at i ∈ I by Ai ⊆ A.
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c) Denote the number of ambulances that serve demand at i ∈ I by ni = |Ai|.
d) Denote the number of ambulances that are positioned at bases of Mi by yi = |Ai|.
e) Denote the number of ambulances that can reach demand point i ∈ I within response time R by xi.

Note that in Q-PLSCP solving the IP-formulation yields values xj , ∀j ∈ J , and equation bi ≤ yi =∑
j∈Ni

xj holds for all demand points i ∈ I.
It is not necessary that each ambulance for which tai ≤ R holds is an element of Ai. This makes our

adjustment also possible for Q-MALP.

5.1 Bounds on the busy fractions

In the remainder of the paper the (offered) workload that is generated in a neighborhood, and busy fraction
of the ambulances play a central role.

Definition 2 a) Define for arrival rate λ and mean service time β the workload

ρ := λβ.

Similarly, the workload at demand point i ∈ I is denoted by ρi = λiβi.
b) For the remainder of this paper we redefine Erlang B as a function of ρ and b by substituting ρ = λβ,

which is equivalent to Equation 5:

ErlangB(ρ, b) =
ρb

b!∑b
k=0

ρk

k!

≤ 1− α.

Similarly, we get ErlangB(ρi, bi) = ρbi

bi!
/
∑bi
k=0

ρk

k! ≤ 1− αi for i ∈ I.

We define the bounds on the busy fraction of an ambulance, and in Section 5.2.2 we illustrate how they
are used. A starred notation (∗) refers to the solution of the problem that we found, and hence depends
on ni; this is not necessarily a global optimum.

Definition 3 Consider an independent system with Poisson arrivals, workload ρ, and a fixed reliability
level α.

a) Define the minimal required number of ambulances at workload ρ by

b(ρ) := argminb′∈N{ErlangB(ρ, b′) ≤ 1− α}.

For a neighborhood Ni, i ∈ I, we have a demand point dependent αi and define it as

bi(ρi) := argminb′∈N{ErlangB(ρi, b
′) ≤ 1− αi}.

b) Define the lower bound on the busy fraction per ambulance with n ∈ N>0 serving ambulances by

Ψ low(ρ, n) = ρ/n.

Furthermore, define Ψ low(ρ) := ρ/b(ρ) and Ψ∗,lowi (ρ) := ρ/ni for i ∈ I where we have ni = |Ai| ambulances
that serve demand point i.
Denote Ψ lowi := Ψ low(ρi), and Ψ∗,lowi := Ψ∗,low(ρi, ni) for i ∈ I.
c) Define the upper bound on the busy fraction per ambulance for a system with offered workload ρ by

Ψupp(ρ) := sup
ρ′

(ErlangB(ρ′, b(ρ)) ≤ 1− α)/b(ρ).
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ρA = 0.2
αA = 0.8
bA = 1
nA = 1
xA = 1
Ψ lowA = 0.2
ΨuppA = 0.25

xJ = 1
ΨJ = E

ρB = 1.5
αB = 0.95
bB = 4
nB = 4
xB = 4
Ψ lowB = 0.375
ΨuppB = 0.3825

xK = 3
ΨK = 0.375

A B

J

K

NA NB

Fig. 5 A counterexample for a region where rural neighborhood NA and urban NB share one ambulance at J , which
cannot fulfill the workload conditions of both neighborhoods simultaneously.

Consequently, the upper bound on the busy fraction per ambulance for a neighborhood Ni, i ∈ I, is the
supremum on the busy fraction serving each ambulance in Ni such that any more workload leads to an
additional ambulance:

Ψuppi := sup
ρ′

(ErlangB(ρ′, bi) ≤ 1− α)/bi,

Ψ∗,uppi := sup
ρ′

(ErlangB(ρ′, ni) ≤ 1− αi)/ni.

Denote the corresponding arguments by ρuppi and ρ∗,uppi , respectively.

5.2 The basic idea

The basic idea behind the workload condition consists of two insights.

1. Handling Overcapacity We staff for an isolated neighborhood i ∈ I with workload ρi and reliability
level requirement αi. This yields a minimal number of ambulances bi required in the neighborhood
Ni. We do realize that due to bi being an integer we have a slight overcapacity of ambulances in the
neighborhood. This overcapacity can be used to serve outside neighborhood i.

2. Workload Condition Neighborhoods share ambulances, while an ambulance a ∈ A may only have one
busy fraction at which it operates. Ambulances can only serve neighborhoods if these neighborhoods’
have no conflicting constraints on the ambulance’s busy fraction. We formalize this concept later in this
section.

5.2.1 Clarification by a counterexample

We clarify the need of the various bounds on the busy fraction through a counterexample where an assign-
ment through Q-PLSCP with demand point dependent reliability level requirements fails in the case that
demand between adjacent neighborhoods differs significantly; see Figure 5. Consider an ambulance region
with two demand points A and B, with ρA = 0.2, ρB = 1.5, αA = 0.8, and αB = 0.95. When we assume NA
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to be an isolated region, ErlangB yields bA = 1. Because ErlangB(ρ = 0.25, b = 1) = 0.2 we have Ψ lowA =
0.2/1 = 0.2 and ΨuppA = 0.25/1 = 0.25. Likewise, we have bB = 4 and ErlangB(ρ = 1.53, b = 4) = 0.05,
hence Ψ lowB = 1.5/4 = 0.375 and ΨuppA = 1.53/4 = 0.3825. Figure 6 shows this behavior. If yi = ni = bi for
all i ∈ I, there is a slight overcapacity of workload OA = (0.25 − .2)1 = 0.05 Erlang in place for NA, and
NB has an overcapacity of OB = (0.3825− .375)4 = 0.03 Erlang.

Let us now consider two base locations J and K, such thatMA = {J} andMB = {J,K}. An optimal
solution to the IP is xJ = 1 and xK = 3. If we focus on the ambulance at J we see that neighborhood
NA says that its workload may not exceed ΨuppA = 0.25, because any extra workload yields the need of
an additional ambulance at MA to keep the guarantee that the reliability level is at least αA = 0.8.
On the other hand, neighborhood NB requests from each of its ambulances to handle a workload of at
least Ψ lowB = 0.375. If the busy fraction of an ambulance goes below this value we cannot guarantee the
reliability level. We see that the two neighborhoods have contradicting requirements for the workload of
this ambulance.

This illustrates why an extra condition on the workload for a valid ambulance allocation is required.

5.2.2 Notion behind the various busy fractions

The counterexample that an ambulance allocation cannot guarantee the reliability level αi for demand
point i ∈ I if there is another demand point i′ ∈ I, such that:

1. either Ψ∗,lowi > Ψ∗,uppi′ or Ψ∗,lowi′ > Ψ∗,uppi , or both, and;
2. demand points i and i′ share ambulances.

We adapt the queuing method in such a way that this cannot occur, which is a step forward in our
quest to replace the isolation assumption by a more general structure. From the negation of this statement
we draw a hypothesis. Take any ambulance a ∈ A at random. If Ψ∗,lowi1

≤ Ψ∗,uppi2
holds for all combinations
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Fig. 6 Lower bound on the busy fraction per ambulance Ψ low(ρ) for given workload ρ = λβ such that the minimal
reliability constraint α is met with a minimal number of ambulances b induced by Erlang B.
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of demand points i1, i2 ∈ I that a serves, then we may be able to guarantee the reliability level αi for
demand point i ∈ I.

This is only the case if there is a variable Ψduma such that Ψ∗,lowi ≤ Ψduma ≤ Ψ∗,uppi holds for all demand
points i that a serves. We call Ψduma the ambulance’s dummy busy fraction. It can be easily shown that
the dummy busy fraction is an upper bound to the actual busy fraction that the ambulance gets using the
allocation that follows from the solution. (To proof, add only for ambulance a, a minimal dummy demand
of the type ‘keep on waiting’ to all demand points that a serves until all these demand points have a similar
lower bound on the busy fraction per ambulance.)

The overcapacity Oi := (Ψ∗,uppi − Ψ∗,lowi )ni may be used to serve calls outside Ni.

5.2.3 Widening a demand points acceptance gap

We show that when enough ambulances are added we can fulfil the condition from the hypothesis for
any region. After applying the Q-model’s IP to a possibly homogeneous region, the requirement on the
various busy fractions is usually not fulfilled. We show that it is possible for any ambulance region that this
‘workload condition’ gets fulfilled when enough ambulances are strategically added to the base locations,
on top of the allocation we already obtained from the IP. This lays the base for the proposed adjusted
queuing approach.

When ni increases, i ∈ I, both the lower and upper bounds on the busy fractions for the ambulances
in neighborhood Ni change: the lower bound on the busy fraction decreases in ni, while the maximum
workload per ambulance increases in ni.

Proposition 1 For b ≤ n, the following two conditions hold for any ρ ≥ 0 and any fixed α ∈ [0, 1].
a) Ψ low(ρ, n) ≤ Ψ low(ρ, b). Equality holds if and only if n = b.
b) Ψupp(ρ, n) ≥ Ψupp(ρ, b). Equality holds if and only if n = b.

Hence the gap between Ψ low(ρ, n) and Ψupp(ρ, n) widens if n increases from two sides: both the lower

bound decreases and the upper bound increases. For Ψ∗,lowi and Ψ∗,uppi we call this the acceptance gap. As
a result, once a neighborhood is covered, it stays covered when additional ambulances are included in Ai.

As n increases, the lower bound on the busy fraction for each ambulance goes to zero, and the upper
bound exceeds one. This is an important insight that is required to proof that the proposed adjusted
queuing method always leads to a solution.

Theorem 1 For any i ∈ I, ρi > 0, αi ∈ [0, 1] for ni →∞, we have

(a) Ψ∗,lowi ↓ 0.
(b) Ψ∗,uppi ↑ 1

1−αi
> 1.

Theorem 1 states that for every i ∈ I and fixed value Ψduma ∈ (0, 1) for all a ∈ A there exists a
finite number ∆ni ≥ 0 such that allocating an additional number of at least ∆ni demand points i serving
ambulances at Mi, the following holds for each a ∈ Ai: Ψ∗,lowi ≥ Ψduma ≥ Ψ∗,uppi . Recall that Ψ∗,lowi

and Ψ∗,uppi depend on ∆ni. This means for PLSCP-models that adding enough extra ambulances at base
locations in a somewhat smart fashion always leads to a feasible result; Section 5.4.1 shows an example.

5.3 Workload condition

This section formalizes the hypotheses from Section 5.2. In the adjusted queuing methods we replace the
isolation assumption of the Q-methods by the workload condition.
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Theorem 2 Workload condition The reliability level αi is guaranteed for every demand point i ∈ I if
there exists an assignment of dummy variable Ψduma for every a ∈ A and an assignment Ai ⊆ A for every
i ∈ I such that all these conditions hold:

Ψ∗,lowi ≤ Ψduma ≤ Ψ∗,uppi . (8)

Hence, the workload condition provides inspiration for a new definition of coverage for a demand point.
Using this definition, every demand point is covered if and only if the workload condition holds.

Definition 4 Coverage of a demand point Given a set of ambulances A, and a coupling between a
demand point and a subset of ambulances Ai for i ∈ I, such that every a ∈ Ai is stationed at any j ∈Mi

and has a fixed effective workload Ψduma . We say that demand point i is covered if Ψ∗,lowi ≤ Ψduma ≤
Ψ∗,uppi ∀a ∈ Ai holds.

Theorem 3 If the isolation assumption holds for an allocation through a Q-method, then the workload
condition is satisfied.

Theorem 3 shows that the workload condition is a generalization of the isolation assumption that Q-
PLSCP of Section 3.4.2 uses.

Corollary 1 The demand point coverage in Definition 4 is a generalization for the definition of coverage
found in the Q-methods.

The workload condition is a sufficient condition, not a necessary one. Using the actual average workloads
of ambulances it may be possible to construct an example where the reliability level is guaranteed for all
demand points, while the workload condition is not satisfied. We leave the construction of a counterexample
open for future research.

5.4 A post-processor to meet the workload condition

Recall that we replace the isolation assumption of the queuing assumption by the workload condition, and
drop the assumption that the demand between neighborhoods does not vary much over space. In that case
the allocation through the IP-formulation does not necessarily satisfy the workload condition.

A post-processor is required to adjust the solution in the slightest possible extent, such that the work-
load condition gets respected. In the adjusted queuing formulation we use a basic post-processor.

In the case that a solution of a Q-method does not respect the workload condition, we demand a higher
minimal coverage by stating bi ← bi + 1 for each neighborhood that cannot satisfy the condition, and solve
the IP-formulation again.

There are alternative approaches possible:
1) Find an alternate optimum to the IP-formulation for which the workload condition holds. In the coun-
terexample xJ = 4 and xK = 0 would be such a solution with the same objective value Z = 4, while all
constraints are still respected.
2) Put an extra ambulance on a base location in a neighborhood where the workload condition is not
satisfied.
3) It is an interesting topic for further research to see if it is possible to adapt the IP-formulation such that
the workload condition always holds.

Note: In this paper we do not focus on making an optimal post-processor, and we settle on a basic post-
processor for PLSCP that provides a solution that satisfies the workload condition to show an improvement
on the existing papers.
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5.4.1 A basic post-processor for maximal reliability models

For our result section we use a basic post-processor. This post-processor assumes that every used potential
ambulance within the response time threshold must be able to respond to a call. It also assumes that the
dummy busy fraction of ambulances that are stationed at the same base location is always the same. It
prefers to add ambulances to base locations where it has the most added value.

Algorithm 1 Basic post-processor for maximum reliability models
1: repeat
2: for all i ∈ I do
3: Update Ψ∗,lowi and Ψ∗,uppi .
4: end for
5: for all j ∈ J do
6: Ψ∗,uppj ← min{Ψ∗,uppi : j ∈Mi and i ∈ I}
7: end for
8: for all j ∈ J do
9: mj ← 0 . Uncovered demand mj through workload condition

10: m∗,upp ← 0 . And m∗,upp holds the maximal uncovered demand
11: w ← undefined . Base location w has the highest uncovered workload
12: for all i ∈ I do
13: if j ∈Mi and Ψ∗,lowi > Ψ∗,uppj and nj > 0 then

14: mj ← mj + fi
15: if mj > m∗,upp then
16: w ← j . j has the most uncovered demand so far
17: m∗,upp = mj
18: end if
19: end if
20: end for
21: end for
22: if w 6= undefined then
23: xw ← xw + 1 . Add an additional vehicle at w and repeat this procedure.
24: end if
25: until w = undefined . If w 6= undefined, the workload condition is not satisfied.

It is not hard to see that the basic post-processor satisfies the workload condition; take Ψduma = Ψ∗,uppj if
a is stationed at j and note that Line 13 in combination with the stop condition w = undefined guarantees
Ψ∗,lowi ≤ Ψ∗,uppj (≤ Ψ∗,uppi ) for all i ∈ I. Note that ni = yi holds.

A property of this post-processor is that either all ambulances of a base location cover a demand point,
or none do.

6 Solution to Challenge 2: density dependent demand aggregation

Section 4 illustrated the cause of over-estimation for the required number of ambulances in each neighbor-
hood for realistic ambulance regions. Section 5 proposed the workload condition as a generalization of the
isolation assumption; see Theorem 3. This section proposes a solution that does not contain the demand
projection effect.

Our solution to the over-estimations lies in the way both arrival rate λi and mean service time βi are
approximated for each demand point i ∈ I, and we propose an alternative calculation method for these
variables. The next section contains the adjusted queuing variants of the Q-PLSCP, the so-called adjusted
queuing models AQ-PLSCP, that use the findings of this section as an input.
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Section 8 compares results from the Q-models with the adjusted queuing models for four actual ambu-
lance regions to show the extent of the improvements.

The adjusted queuing approach uses another calculation methodology for the three Erlang B input
parameters of demand point i’s neighborhood, i ∈ I: arrival rate λi, mean service time βi, and reliability
level αi. We discuss these input parameters one at a time.

The second change is that a post-processing phase guarantees that the reliability level requirement is
met for every demand point; see Section 5.4.

The basic difference is that the reliability level αi is a demand-point-based fixed input parameter
instead of a system wide constant. The approximation of the arrival rate and mean expected service time
are discussed in Subsection 6.1 and Subsection 6.2, respectively.

6.1 Arrival rate

In the adjusted queuing approach we calculate λi in a different way compared to the Q-models, and add a
post-processing phase that guarantees a valid solution. Directly after proposing our adjustments we provide
theorems that prove that they work.

Method The method consists of an initialization, solving an IP-formulation and finally a post-processing
phase.

Initialization To each demand point i ∈ I we assign a fixed density value ψi ∈ R that reflects
an approximation of the fraction of total workload we can expect in neighborhood Ni. Various choices
for the density ψi can be made. In this paper we use the historical arrival frequency ψi = fi as our
primary density measure (FAQ-methods), another choice is to take the population per square meter ψi =
C · populationNi

/areaNi
(DAQ-methods) for some system wide constant C > 0.

The adjusted queuing approach redefines the neighborhood NAQ
i by only including demand points that

have at most the same density value of demand point i:

NAQ
i := {i′ ∈ I : tii′ ≤ R and ψi′ ≤ ψi}. (9)

The arrival rate λi of neighborhood Ni is obtained by summation over its demand points of at least the
same density:

λAQi :=
∑

k∈NAQ
i

fk =
∑
k∈NQ

i
ψk≤ψi

fk. (10)

The neighborhood of the Q-models is denoted by NQ
i . Note that NAQ

i ⊆ NQ
i . The general concept of

neighborhood is denoted by Ni, and it will not be used in mathematical formulations from now on because
it has become ambiguous; instead we use NQ

i or NAQ
i .

IP-formulation Similar to literature, Erlang B yields bAQi := argminb′∈N(ErlangB(λAQ, βAQ, b′) ≤
1− αi), which takes the places of bi in the IP-formalation of the Q-methods.

Post-processing Through local search and putting additional ambulances at base locations, we make
sure that the workload condition of Theorem 2 holds. There are multiple possible options for a post-
processor; we use Algorithm 1 for generating results in this paper.

Section 5.4 shares some thoughts about alternative post-processing methods and concludes that find-
ing the optimal post-processor remains an interesting topic for further research. Results for four actual
ambulance regions are shown in Section 8.
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Correctness of adjusted queuing methods Theorem 4 states that the new adjusted neighborhood definition
for demand aggregation may be used in the same manner as the ones in the Q-methods.

Theorem 4 Correctness of the AQ-methods The ambulance allocation using the AQ-method’s neigh-
borhood definition guarantees reliability level αi for each demand point i ∈ I that is covered.

The next theorem states that the number ambulances with the adjusted queuing neighborhood definition
will never exceed the number of ambulances using the Q-methods.

Theorem 5 The required number of ambulances through AQ-PLSCP, being ZAQ, is at most the number of
required ambulances ZQ through Q-PLSCP for constant αi = α over all demand points i ∈ I if the solution
of the IP-formulation respects the workload condition.

Some final words on the choice of density values: FAQ vs. DAQ Choosing other orders than FAQ have
two implications: 1) Because demand points with higher densities are counted multiple times, we see that
the mean demand over the area increases leading to a higher number of vehicles. Of course this is a valid
bound to reach a reliability level of α, but our proposed ordering yields a sharper bound. In this argument
we used the symmetric travel times assumption. 2) Our ordering guarantees that demand concentrates at
the demand point of interest. Any other ordering leads to demand projection to some extent.

DAQ projects demand to some extent to regions where the population density is relatively high in
relation to the historic incidents. This choice leads to more conservative solutions in the case of demographic
changes due to aging population.

6.2 Expected service duration and iterative process

The last remaining item to discuss is a fixed-point method to calculate the mean service time βi of an
ambulance covering i ∈ I. Every demand point i ∈ I may have multiple base locations by which it can
be reached, i.e. |Mi| > 1. It is reasonable to assume that ambulances that are allocated to the same base
location have the same mean service time.

Differences in the mean service time between neighboring base locations are not that large due to the
fact that PTD, TMT, and TFT are system wide constants, and the differences in driving time are relatively
small compared to the mean service time. Moreover, when we increase the value of the service time it leads
to conservative solutions because we rather allocate more ambulances than less, i.e. a slight over-estimation
of βi is allowed to honor the reliability constraint, in contrast to an underestimation that may break this
constraint.

We take a demand point i ∈ I at random and describe how we calculate its mean service time βi.
The values of βi are calculated iteratively where we alternate the update of the allocation by solving the
IP-formulation and values for βi. During initialization the ambulances are allocated at random. We use a
clear overcapacity in FAQ-PLSCP, e.g. we put 1000 ambulances on a single base. Recall our assumption
that base locations are reasonably located and demand points are most likely to be served by the nearest
ambulance base location. Hence, we assume that the response time is dominated by the travel time from
the nearest base location that has at least one ambulance stationed.

Consider demand at this demand point and for now ignore that ambulances are shared with other de-
mand points. We can approximate the mean service time of an ambulance serving exclusively this demand
point i and thereby ignoring the fact that the service is influenced by all other demand points. The contribu-
tion of this exclusive mean service time β̃i to the mean service time of an ambulance serving demand point
i can be approximated by the time from the nearest base location with at least one ambulance allocated to
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the nearest hospital. This value can be seen as the contribution of the demand point to the mean service
time β̃j of an ambulance at this base location j ∈ J . We have

β̃i = min
h∈H,j∈J ,xj>0

βhij . (11)

Recall that the ambulances are the servers in our Erlang B approach, and the service time depends on
the base locations and the vertices they serve. For every base location, we now have to find a reasonable
approximation of the mean service time by taking the weighted average mean service time over all exclusive
mean service times in the base’s neighborhood Nj .

β̃j =

∑
i′∈Nj

di′ β̃i′∑
i∈Nj

di′
. (12)

We do not use the frequency adjustment in this calculation, since the allocation by the IP-formulation
assumes that this base location can service any demand that it covers. Also recall the previous discussion
where we concluded that we may slightly overestimate mean service times. A corollary is that the mean
service time of base locations with a large overlap in demand points is limited.

Because base locations with an ambulance stationed in the vicinity of i are more likely to cover demand
points with a large response time from this base j than the demand point close to j, this β̃j is conservative.
Here we used the assumption that base locations are reasonably spread over the region.

Staying conservative, for the mean service time of demand point i we can take the largest value β̃j that
can be reached from the base location. Most likely this is a sharp upper bound for the actual mean service
time of ambulances that serve i. We have

βi = max
j∈Mi

β̃j . (13)

With FAQ-PLSCP our purpose is to minimize the number of ambulances such that every demand
point receives the required coverage. We stop the iterations if the total number of ambulances in successive
iterations is the same.

Relation to Q-models Q-models take βi = β as a system wide constant [?,?]. Also, a statement can be
found about taking βi equal to the average amount of work on the fictional server in the neighborhood Ni,
effectively saying

βi =

∑
i′∈Ni

minh∈H di′βhi′i∑
i′∈Ni′

di′
. (14)

Our method improves on these methods by giving the actual server, i.e. the ambulance(s) on a staffed
ambulance base, a central role in the calculation of βi.

7 The solution to our problem: the adjusted queuing approach

The adjusted queuing approach consists of applying two transformations of the queuing approach. First
we replace the neighborhood definition NQ

i by the adjusted queuing version NAQ
i of Section 6 through

the density dependent demand aggregation for all demand point’s i ∈ I. Second, we make sure that the
workload condition of Section 5 is satisfied by applying a post-processor.
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7.1 Model formulation for AQ-PLSCP

For the adjusted queuing probability location set coverage problem (AQ-PLSCP) we provide the model
formulation after applying these two transformations. We introduce an iterative process to obtain a realistic
approximation of the mean service time for each demand point. Taking ψi = fi the arrival frequency leads
to the FAQ-PLSCP, while taking ψi = di the population density leads to DAQ-PLSCP (for all i ∈ I).

Initialization

1. Calculate values λi =
∑

i′∈Ni
ψi′≥ψi

fi′ for all i ∈ I.

2. Calculate values βhij for all combinations of h ∈ H, i ∈ I, and j ∈ J .
3. Set xj = 1000 (or higher bound if required) for exactly one randomly chosen base location j ∈ J . It

also works for other choices of allocations with a huge upper bound for the number of ambulances.

Iterations

1. Calculate the values of βi for all i ∈ I,

βi = max
j∈Mi

(∑
i′∈Nj

di′ minh∈H,j′∈J ,xj>0 βhi′j′∑
i∈Nj′

di

)
. (15)

For a stepwise procedure we refer the reader to Subsection 6.2.
2. Calculate bi from Erlang for each i ∈ I,

bi = argminn∈N≥0
{1− ErlangB(λi, βi, n) ≥ α}. (16)

3. Allocate xj ambulances at base j ∈ J by solving the IP-formulation,

min Z =
∑
j∈J

xj

s.t.
∑
j∈Mi

xj ≥ bi, ∀i ∈ I

xj ∈ N≥0.

Stop condition Stop when the number of vehicles
∑
j∈J xj stays the same for two successive iterations.

Although a rigorous proof is missing, in practice we noticed that this algorithm converges to its accumulation
point within a few iterations.

Post-processor Run the post-processor and obtain the results. See Section 5.4.1 for a basic post-processor.

7.2 Relation between Q-models and AQ-models

We conclude the section with statements about the relationship between the Q-models and AQ-models.

Theorem 6 The AQ-methods are a generalization of the Q-methods.

Corollary 2 Correctness of the Q-methods The ambulance allocation using the Q-methods neighbor-
hood definition, the isolation assumption, and constant reliability level α guarantees a reliability level of at
least α for each demand point i ∈ I that is covered.
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Note that the proof of Corollary 2 does not rely on a cancelation argument like the Q-method papers.

The following property show that every demand points arrival rate and mean service time are equal
in the Q-methods and AQ-methods, that is, when the isolation assumption holds. As a result, when the
reliability level is a system wide constant, both models give the same number of ambulances.

Property 1 Under the assumption that demand, base locations and hospitals are evenly and well spread
between adjacent neighborhoods, we see that the FAQ-methods yield Erlang B input parameters λi, βi
similar to the Q-models for all i ∈ I.

Property 2 If a region satisfies all assumptions of Q-PLSCP, then both Q-PLSCP and FAQ-PLSCP give
exactly the same facility location and allocation solutions if one chooses αi = α constant for all demand
points i ∈ I and if one uses a post-processor that always stops if the workload condition can be met.

These properties are also valid for all other density measures that are used in minimal reliability models,
and the proofs go likewise.

8 Results

In this section we show results for four actual ambulance regions, where we compare the AQ-PLSCP to
other models described in the current literature.

First we determine a set of parameters that are input for all calculations, next we compare Q-PLSCP to
FAQ-PLSCP and DAQ-PLSCP. These calculations give the minimal number of vehicles needed to provide
coverage. We also provide a comparison with the EBNB model, where all demand is projected to the
nearest base, after which a per-base minimal required number of ambulances is calculated using the Erlang
B formula.

We limit ourselves to weekdays between 10 and 12 am. These intervals do not contain a change of shift
for any of the ambulance regions we considered, and they have a reasonable constant but substantial arrival
rate. There are also no major fluctuations in demand between these weekdays.

Table 1 Constants taken from actual call database, for weekdays 10:00–12:00 over multiple years. Note: These durations
are not necessarily equal to the regions’ official performance. For the official numbers we refer to [?].

Region Urgencies Number PTD CHT TMT TFT Fractions
of calls of HU HU LU by ALS

Utrecht Only ALS 28109
2:51

1:35 17:58 16:52 53.74%
42.88%

All calls 73668 2:33 16:46 18:59 25.03%
Amsterdam Only ALS 26259

3:32
1:22 19:05 19:37 77.32%

54.59%
All calls 59060 2:54 17:23 20:06 30.56%

Gooi & Only ALS 4061
2:37

1:04 15:57 10:49 75.48%
54.49%

Vechtstreek All calls 8930 2:08 14:14 12:13 34.32%
Flevoland Only ALS 6640

2:50
1:22 15:46 17:13 59.21%

40.59%
All calls 12725 2:25 14:54 16:58 33.04%

8.1 Parameters

Table 1 displays all input constants that are taken from actual data. They are obtained from real data
to stay close to reality. We aggregate to four position postal code level; see Table 2 for the number of
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demand points in every region. Because maximum reliability models assume that every demand point can
be reached from at least one base location, we omit a few isolated demand points to be able to perform
calculations.

Note that the choice of the scaling parameter does not influence the outcome of the methods.
An ambulance partner provided us with values αi = 0.95 for urban and αi = 0.80 for rural areas. After

plotting the population density per postal code area on a map we choose a good threshold value between
urban and rural areas. The population density does not necessarily depend on ψi. Although Q-PLSCP
actually is not designed for a variable reliability value, we use it for fair comparison; after all the real
regions also do not meet the isolation assumption.

8.1.1 Arrival rate, density function and reliability values

The arrival frequency fi for every demand point is calculated from the actual call detail records that were
provided by each of the individual ambulance regions, over the years 2008–2012. We counted the number
of dispatched calls and divided through the total duration over all these 2-hour interval blocks.

The density measure for frequency adjustment is ψi = fi. The density measure ψi for density adjustment
is obtained by dividing the arrival rate through the area of postal area i and multiplying the result with a
system wide constant scaling parameter C ∈ R:

ψi = C
λi

areai
. (17)

8.1.2 Mean service time

We calculate the mean service time at demand point i ∈ I

β̃i = min
h∈H,j∈J ,xj>0

(CHT + tji + TMT + tih + TFT + addon) . (18)

This is the time from the nearest base to the nearest hospital. Let us explain how and why the value for
addon is calculated. When a patient is transported from a hospital, and there is a base location in the same
postal area, we have tji = 0 seconds. This is not realistic, because often the ambulance station is positioned
in a separate building. We use a constant of 5 minutes driving time between these buildings. This includes
the opening and closing of garage doors. When an incident happens in a hospital, the nearest hospital would
be the hospital itself, leading to a DTH of 0 seconds. Because calls that originate in a hospital often concern
a patient brought home or taken to another hospital, this is not realistic. From the call center database we
calculate an average DTH for every demand point that contains a hospital and use that as addon.

We correct the travel speeds for traveling with optical and auditory signals in the case the ambulance
travels to a high urgency (HU) patient. This is the highest class of ALS urgency, and the only class where
an ambulance always travels with active optical and auditory signals. Medium urgency (MU) calls are also
considered ALS, and all low urgency (LU) calls are considered BLS. In reality ALS ambulances can respond
to both ALS and BLS calls, and BLS ambulances can only respond to BLS calls. All travel speeds in this
paper are deterministic and do not change over time, i.e., they are being requested by navigation software.

We consider two cases. The first case contains only the HU and MU calls, which are all being handled
by ALS ambulances. This calculation requires a correction because in practice the ambulances in our data

Table 2 Number of demand points for every ambulance region.

Region Utrecht Amsterdam Gooi & Vechtstreek Flevoland
Demand points 220 103 41 94
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Table 3 Required number of ambulances for weekdays 10:00–12:00 for EBNB, Q-PLSCP, FAQ-PLSCP, and DAQ-PLSCP.
C: Actual number of ALS vehicles corrected for their BLS transportations. R: Advised number of ambulances for 95% within
R = 15 minutes subject to at least one ambulance at every base location by RIVM. Notation AQ-models: before-after
applying the post-processor.

Region Urgencies Actual EBNB Q-PLSCP FAQ-PLSCP DAQ-PLSCP
Base Locs Base Locs Base Locs Base Locs

Act. C/R Fixed Fixed Free Fixed Free Fixed Free

Utrecht Only ALS 31 C: 21.0 25 34 28 18-27 16-30 23-25 18-27
All calls 37 R: 35 39 65 48 25-33 25-46 35-40 28-45

Amsterdam Only ALS 35 C: 20.7 27 41 33 18-28 17-36 20-30 19-35
All calls 40 R: 39 44 81 59 30-42 29-54 37-49 35-66

Gooi & Only ALS 7 C: 4.1 5 5 5 4-4 4-7 4-5 4-5
Vechtstreek All Calls 7 R: 6 8 9 9 6-7 5-8 6-7 6-8
Flevoland Only ALS 13 C: 9 11 17 13 12-13 11-12 13-13 10-13

All calls 13 R: 11 13 21 18 14-17 13-17 16-16 14-18

set do also respond to BLS calls, which is discussed in Section 8.2.1. The second case has one ambulance
type that responds to all ambulances.

For the Q-methods we use for all i ∈ I a mean service time

βi = β̃i. (19)

To calculate βi we follow the procedure of Section 6.2 for the adjusted methods, for all i ∈ I.

8.2 The Q-PLSCP model compared to FAQ-PLSCP and DAQ-PLSCP

We have implemented Q-PLSCP, FAQ-PLSCP, DAQ-PLSCP, and EBNB in the TIFAR framework, and
used the Coin-OR CBC solver through the CoinMP interface to solve the IP-formulation.

The model is used to solve various scenarios. We made a distinction between calls of ALS urgency only,
and all calls. A second distinction we made was between a free choice of base location and fixed locations. In
the free base location, also known as a greenfield scenario, a potential base location is placed at the location
of every demand point. For the fixed locations we used the actual base locations that were in use during
the time where our data originates from. We use a constant R = 15 minutes. The results are presented in
Table 3.

The naive Erlang B on the Nearest Base (EBNB) projects all demand to the closest base location, and
solves Erlang B for each base location separately. Because EBNB takes the DTI equal to the driving time
from the base location to the nearest hospital, the mean service time may be significantly lower for regions
where hospitals are near base locations. This may lead to a lower required number of ambulance for EBNB.

Before we compare the two methods and the actual number, we discuss the correction for ALS ambu-
lances that serve BLS demand.

8.2.1 Correction ALS vehicles for BLS load

Regions Utrecht and Amsterdam have both ALS and BLS vehicles. ALS vehicles are capable to handle
BLS load, but this does not hold the other way around. To compare our results with the actual numbers,
we have to correct the realistic number of ALS vehicles for their BLS load. We know that BLS vehicles
have a higher busy fraction than ALS vehicles because they handle load that can be planned in advance.
We assume that ALS vehicles will only do BLS within their own region, and that longer interregional rides
are all done by the dedicated BLS vehicles. This yields similar driving times for all calls handled by ALS
vehicles.
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Our correction is done through an estimation. Realistic numbers for the busy fractions are 0.8 for BLS
and 0.6 for ALS for dense regions like Utrecht and Amsterdam. The times used for these estimates include
the driving back to base. When ALS vehicles handle BLS calls they are more efficient than handling ALS
calls. This can be explained because first of all the stochastic arrival nature is eliminated and, second,
because the ALS vehicles only do BLS load when there is an overcapacity in ALS vehicles. When dealing
with BLS load, we assume that ALS vehicles are as effective as BLS vehicles doing the same work.

This means that when an ALS vehicle handles BLS load, it has 4/3 times the effectiveness. If we know
the fraction of BLS load done by an ALS vehicle, we can use this fraction and the effectiveness measure
to correct the actual number of vehicles for the BLS work they do. This yields a corrected number of 21.0
vehicles for Utrecht and 20.7 vehicles for Amsterdam.

8.2.2 Comparison of PLSCP-methods

We see that for all fixed base location scenarios the required number of ambulances in Q-PLSCP exceeds
FAQ-PLSCP, and that the actual numbers for the fixed base locations are much closer to the actual
(corrected) numbers than Q-PLSCP.

We give an interpretation to the results in Table 3. For Only ALS we see that the corrected actual
number of ambulances for Utrecht and Amsterdam lies between the FAQ-PLSCP numbers with free and
fixed bases. This is realistic, because DAM yields an optimization on the scenario with fixed base locations,
and a free choice of base locations can be seen as optimal locations, which provides a lower bound. For All
calls we see that FAQ-PLSCP gives a slight underestimation for these two regions. We assume the main
cause is the way BLS calls differ from ALS calls, and BLS calls are a major part of the total volume.

Gooi & Vechtstreek is the smallest region of the country, and it has only ALS vehicles. We see that our
results for All calls with fixed base locations are exactly the same. Q-PLSCP gives over-estimations.

Flevoland is a rural area with two large cities. We see that all minimal reliability models require more
ambulances than what they currently have. In reality we see that the urban areas have a good score, while
the rural areas underperform. The minimal reliability models allocate an additional ambulance on rural
bases to meet performance which explains the slightly higher numbers. A clear difference between Q-PSCLP
and AQ-PLSCP can be observed.

Let us discuss factors that influence the performance between our method and actual numbers.

Practical Implications The actual numbers are not necessarily the optimal allocation, because the regions
optimize another objective function than we do. On the one hand they try to minimize the number of
late arrivals, while keeping local communities satisfied. It may be that due to shift lengths they have a
temporary over- or undercapacity, and they correct this in another time block to meet the constraints and
objective.

Dynamic ambulance management All regions perform some kind of dynamic ambulance management
(DAM). In our calculations we assumed that every ambulance returns to its home base, which lets us
lose some performance.

Behavior of BLS vehicles As stated in the discussion above, BLS vehicles have a higher busy fraction
because they handled planned transport that misses the stochastic nature of ALS calls. However, there are
two things to keep in mind that can counter-affect this increase of performance. First of all the patient’s
destinations are located further away. Where ALS patients are most often transported to the nearest
hospital location, BLS patients may be brought to any location in the country. The addon includes these
travel times. Our method assumes that an ambulance becomes available again right after the transfer of the
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patient. When a BLS vehicle is outside of the region, it should return to its own region. This travel time
back to base should be kept in mind for BLS vehicles. Second, there is only one location in a region where
BLS vehicles are stationed. In the case of elective BLS transport the travel time to the patient might be
higher than the travel time from the nearest base location that has at least one ambulance assigned. Third
and last, available BLS vehicles are not relocated through DAM. In the further discussion we assume that
BLS vehicles are all considered as effective as an ALS vehicle.

Response radius We assumed that every call should be available as if it were a high urgency call. The area
in the calculation of λi equals that of a high urgency call. When considering other ALS calls that have a
larger response radius and BLS vehicles that have no response time threshold, we see that our method may
yield a slight over-estimation.

Limit on late arrivals versus mean response time There are two extremes in facility locations; one can
either minimize the number of late arrivals or one can minimize the mean response time. We pose a lower
bound on the late arrivals for every demand point. The result is that in some areas, the mean arrival time
may approach the response time limit for various bounds. Especially when these demand points have a
considerable demand, ambulance providers may choose to position more ambulances than strictly needed
by our response time threshold, such that the mean response time decreases.

Spiking The demand point dependent reliability level requirement ai, i ∈ I, can result in an effect that we
call spiking. If there is a small area with relative high demand and large αurban encapsulated by a rural
area with a low αrural, the arrival rate λ• of urban demand points is dominated by the summarized arrival
frequency of the rural demand points. However, αi depends only on the rural area. This combination may
lead to relatively high values bi for these urban demand points. An overcapacity of about three ambulances
in ambulance region Flevoland is caused by this effect.

9 Conclusion and future research

9.1 Conclusion

In this paper we propose an adjusted queuing approach to the Erlang B queuing based facility location and
allocation model that addresses, explains, and solves the over-estimation problem. We provide an application
of this approach for the Q-PLSCP model. We show that these extensions lead to credible results for regions
that have both urban and rural areas. AQ-models are generalization of their existing Q-model counterparts.

The theoretical framework provided in the paper proves the working of the AQ-approach and, hence,
shows the correctness of the Q-models, amongst Q-PLSCP, which before relied on simulation results. The
adjustment queuing model AQ-PLSCP that we propose gives sharper bounds for the required number of
ambulances needed to fulfill the reliability condition than the Q-PLSCP model in practice.

9.2 Future research

There are some interesting topics left open for future research. First, in this paper we approximate a solution
that respects the workload condition through a basic heuristic. It is interesting to use OR techniques to
find a (proven) optimal solution that minimizes the number of ambulances that is required for the workload
condition.

A key performance indicator in practice is the fraction of late arrivals, which strongly depends on the
travel time distribution. To this end, it would be interesting to extend the current deterministic travel time
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model toward stochastic travel times. Extending the current fixed travel time model toward models with
stochastic travel times is an interesting topic for further research.

Whether an ambulance is in time or late is a binary variable. An interesting extension is taking the
probability that an ambulance is in time. This can be done by taking the continuous counterpart of Erlang-
B, e.g. by allowing 2.5 ambulances to cover a demand point.

It is also interesting to research how we can incorporate the case when no available back-up EMS
provider is available, and what effects this may have on the number of required ambulances. A good first
approximation is to use Erlang C.

In the calculation of β̃i we assume that the ambulance comes from the nearest opened base location.
An interesting enhancement would be to adapt this such that all staffed base locations that can reach
the demand point are included in the calculation. We can do that by taking the probability that a base
location is the one that sends the ambulance, multiplied by the driving time. One can also estimate a good
distribution for the busy time at each demand point using call center records details.

Our method aggregates at demand-point level. This can be extended by giving a minimal reliability
or availability on a set of demand points, so that we could say that a municipality is covered with 80%
certainty instead a separate constraint for every single demand point in the municipality.

Models with a binomial approach also have a queuing approach equivalent. Hence, they have an adjusted
queuing approach. Because the isolation assumption limitation has been overcome in this paper, this opens
up an entire new family of models, for example AQ-REL-P and AQ-MALP. Using these insights it might be
even possible to find the adjusted queuing counterpart of MEXCLP where the AQ definitions of coverage
and busy fraction are being used; this loosens the hard assumption of a system wide busy fraction.
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Appendix A: Notation

This appendix contains all variables that are used in the current paper, in order of appearance.

Variable Description
EMS Emergency Medical Service. Short for ambulance service.
EMT Emergency Medical Technician. Someone who works at an ambulance.

EMCC Emerncy Medical Call Center. Also called (ambulance) dispatch center.
PTD Pre-trip delay: the time it takes from an incoming call to when the assigned ambulance start driving.
h ∈ H A hospital in the set of hospitals.
i ∈ I A demand point in the set of demand points.
j ∈ J A potential base location in the set of potential base location.
V The set that contains all hospitals, demand points and potential base locations.
tji The travel time from j to i. Similar notation for all two combinations of h, i, j.
rij Response time from demand point i from base j.
R Response time limit.
αi The reliability level: the probability that an ambulance is available to reach a patient at i within R

time units must be at least αi.
α System wide constant version of αi.
Z The total number of ambulances in the system, when this number is variable.
xj The number of ambulances assigned to base j.
yi The number of ambulances that are positioned bases in neighborhood Mi.
fi The arrival frequency at demand point i.
βhij The round trip time (without the driving to base time) for a trip from j to i to h.
βi Average service time at demand point i.
β System wide constant version of βi.
Ni The (demand point in the) neighborhood of i.
N •♦ The demand points in the neighborhood of ♦ ∈ {i, j}, using the neighborhood definition of • ∈ {Q,

AQ, FAQ, DAQ}
Mi The base locations in the neighborhood of i.
M•♦ The base locations in the neighborhood of ♦ ∈ {i, j}, using the neighborhood definition of • ∈ {Q,

AQ, FAQ, DAQ}
q The busy fraction of an ambulance. A system wide constant variable.

b]i The number of ambulances that must be assigned to neighborhood Mi, using the approach or
neighborhood definition of ] ∈ {Bin, Erl, Q, AQ, FAQ, DAQ}.

ρi Workload that is generated at demand point i.
bi(ρ) The minimal required number of ambulances at workload ρ at demand point i.
bi Short notation for bi(ρi).

R̃ Response distance limit.

Ñ •♦ Distance based version of N •♦ , ♦ ∈ {i, j}.
ε A very short time period.
ε′ A very small portion of demand.
A The set of all ambulances.
Ai The set of ambulances that may serve demand at i.
ni The number of ambulances that serve demand at i.

Ψ low(ρ, n) The lower bound on the busy fraction for an ambulance at workload ρ and n serving ambulances.
Ψ∗,low(ρ) The lower bound on the busy fraction for an ambulance in our solution.

Ψ∗,lowi Short for Ψ∗,low(ρi).
Ψupp(ρ, n) The upper bound on the busy fraction for an ambulance at workload ρ and n serving ambulances.
Ψ∗max(ρ) The upper bound on the busy fraction for an ambulance in our solution.
Ψ∗maxi Short for Ψ∗max(ρi).
ρuppi The workload at the time when bi ambulances work that hard that exactly the allowed reliability

level αi is met.
ρ∗,uppi The workload at the time when ni ambulances work that hard that exactly the allowed reliability

level αi is met.
Ψduma The dummy busy fraction of an ambulance: a virtual ambulance busy fraction that after solving the

program is within some bounds to the actual value.
ψi A density assigned to i.

Îi An ordered list of all demand points, using densities ψi.

β̃i An approximation for the mean service time at i.

β̃j An approximation for the mean service time of an ambulance stationed at j.
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Appendix B: Proofs

In this Appendix we provide proofs to all theorems, lemmas, propositions, corollaries and properties that
are mentioned in the paper.

Proposition 1 For b ≤ n, the following two conditions hold for any ρ ≥ 0 and any fixed α ∈ [0, 1].
a) Ψ low(ρ, n) ≤ Ψ low(ρ, b). Equality holds if and only if n = b.
b) Ψupp(ρ, n) ≥ Ψupp(ρ, b). Equality holds if and only if n = b.

Proof In the proof we need the following Property: For each number of servers s ∈ N>0 and workload
ρ, ErlangB(ρ, s) is continuous, strictly increasing in ρ, and surjective to the open interval (0, 1). This is
a direct result from Theorem 1 of Jagers [?], and the notion that ErlangB is a cumulative probability
function.

For each t ∈ R, number of servers s ∈ N>0 and workload ρ > 0, ErlangB(tρ, ts) is strictly decreasing
in t. A proof found by Burke is given in the appendix of [?]. a) Ψ lowi (ρ, n) = ρ/n ≤ ρ/b = Ψ lowi (ρ, b). Note
that ρ/n = ρ/b if and only if ni = bi.
b) That equality holds when b = n is trivial. We consider the case b < n. The Property implies that, for
given s, there is a unique value of ρ for which ErlangB(ρ, s) = α. This value of ρ is denoted by ρ†s. Then
by definition, for s ∈ N>0, ErlangB(ρ†s, s) = α. By substituting t = s+1

s in Burke’s statement, it follows
that

ErlangB

(
s+ 1

s
ρ†s, s+ 1

)
< B(ρ†s, s) = α.

Since ErlangB( s+1
k ρ†s, s+ 1) < α and the Property tells Erlang B increases, we know that ρ†s+1 >

s+1
s ρ†s.

This directly leads to
ρ†s+1

s+1 >
ρ†s
s . Induction shows that Ψupp(ρ†s, s) = ρ†s/s is increasing in s. The result

follows directly.

Theorem 1 For any i ∈ I, ρi > 0, αi ∈ [0, 1] for ni →∞, we have

(a) Ψ∗,lowi ↓ 0.
(b) Ψ∗,uppi ↑ 1

1−αi
> 1.

Proof Part (a) follows directly from the fact that limni→∞ Ψ∗,lowi = ρi/ni ↓ 0. To prove part (b), note that
as ni → ∞, while there is precisely enough work to keep all agents fully busy, through economy of scale
the busy fraction of an agent approaches 1. Because the agent is allowed to miss a fraction αi of its total
offered load, we conclude that the maximum allowed workload that the agent receives equals 1

1−αi
. The

inequality then follows directly from 0 ≤ αi < 1.

Theorem 2 Workload condition The reliability level αi is guaranteed for every demand point i ∈ I if
there exists an assignment Ψduma for every a ∈ A and an assignment Ai ⊆ A for every i ∈ I such that all
these conditions hold:

Ψ∗,lowi ≤ Ψduma ≤ Ψ∗,uppi . (20)

Proof Assume that there exists an assignment Ψduma for every a ∈ A and an assignment Ai ⊆ A for every
i ∈ I such that the condition holds. We need to show that the reliability level αi is guaranteed for every
demand point i ∈ I by two steps: i) showing that the ambulances work hard enough that they can handle
the workload at each demand point they serve and ii) other demand points outside the neighborhood Ni
do not use an overdose of capacity from Mi.
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i) Choose i ∈ I at random and keep it fixed. Take Ψduma,min = mina′∈Ai
Ψduma′ the minimum value of

the assigned ambulances’ dummy busy fractions. The workload at i can be served by its ni = |Ai| serving

ambulances since Ψ∗,lowi ≤ Ψduma,min ∀a ∈ Ai yields ρi = Ψ∗,lowi ni ≤ Ψduma,minni ≤
∑
a′∈Ai

Ψduma′ =: ρdum.
Effectively, the workload that the ni ambulances can handle within the performance level αi exceeds the
workload the neighborhood Ni generates.

ii) By assumption, the capacity of ambulances in Ai to serve demand points outside Ni is limited to
Ψ∗,uppi ∀a ∈ Ai. By Definition 3c, ρ∗,uppi := argsupρ′(ErlangB(ρ′, ni) ≤ 1−αi)/ni is the maximum workload
that ni ambulances can handle with a reliability level of αi. It corresponds with a maximum workload of
Ψ∗,uppi . Because Ψduma ≤ Ψ∗,uppi ∀a ∈ Ai we know that ρi ≤ ρ∗,uppi . Combine this with the knowledge
that ErlangB(ρi, ni) is strictly increasing in the workload (see Property from proof Proposition 1) and
Ψduma ni = ρi to conclude that if ErlangB(Ψ∗,uppi ni, ni) ≤ 1 − αi), then also ErlangB(ρi, ni) ≤ 1 − αi
holds. Hence, other demand points outside the neighborhood Ni do not use an overdose of capacity from
ambulances in Ai.

Theorem 3 If the isolation assumption holds for an allocation through a Q-method, then the workload
condition is satisfied.

Proof The isolation assumption states that the demand over the neighborhood borders cancel out and that
demand between neighborhood borders does not vary much over space. This means that the effective busy
factions in neighborhood Ni may equal or slightly exceed that of the minimal busy fraction. However, the
slight excess in the assumption says that the busy fraction does not exceed the maximal busy fraction.
Combining these two statements yields Ψ∗,lowi ≤ Ψduma ≤ Ψ∗,uppi ∀a ∈ Ai. The IP-formulation through a
Q-method guarantees bi ≤ ni. Since i is chosen at random it holds for all demand points.

Corollary 1 The demand point coverage in Definition 4 is a generalization for the definition of coverage
found in the Q-methods.

Proof The Q-methods say that an ambulance is covered if yi = ni ≥ bi. In Q-PSCLP the isolation as-
sumption holds, Theorem 3 states that the workload condition is satisfied. Hence, every demand point is
covered in Definition 4. Remark: for Q-MALP a prior step is required. If a demand point is not covered
in Q-MALP, ni ≤ bi, and thus it cannot be covered through our definition. Remove all uncovered demand
points from I so that we are left with the covered demand points. For these, we can use the same proof as
in Q-PLSCP.

Theorem 4 Correctness of the AQ-methods The ambulance allocation using the AQ-method’s neigh-
borhood definition guarantees reliability level αi for each demand point i ∈ I that is covered.

Proof Assume that the mean service time βi is known for each demand point i ∈ I. Consider a density
measure ψ = {ψi : i ∈ I} on I. Remark 1: Any density measure works, though some will perform
significantly better than others. Remark 2: Value λi depends on the set of density values {ψi, i ∈ I}.
Another choice for the density measure ψ leads to other neighborhood definitions Ni, and hence it can
change arrival rate λi in neighborhood Ni.

Because there are a finite number of demand points, there is always a demand point with the greatest
density. An ordering over the set of demand points by their density in any descending order provides an
index vi ∈ {0, 1, . . . , |I| − 1} to each demand point starting by the one with the greatest density value, i.e.
ψi ≥ ψI if vi ≤ vI , i, I ∈ I. Take a fixed density order in the remainder of this paper in the case there that
are a multiple that are equivalent.

Take a so-called density ordering v such that vi ∈ {0, 1, . . . , |I| − 1} such that ψi ≥ ψj if vi ≤ vj .
Define the set of demand points that has at least density ψi by

Îi := {i′ ∈ I | vi′ ≤ vi} for all i ∈ I.



34 Martin van Buuren et al.

The proof follows from induction over the density ordering v and application of Theorem 2 on the ad-
justed queuing formulation of the neighborhood definition NAQ

• . Note that the workload condition already
guarantees the correctness if we are allowed to omit the arrival frequency of demand points with higher
density value than the demand point of which we calculate the arrival rate.

Consider v0 and the corresponding i0. If i0 is covered, we can apply the workload condition of Theorem 2
on the singleton Îi0 to get the guarantee that the reliability level αi holds. Using the interchangeability
between the demand point i and neighborhood NAQ

i and this cannot be altered by further induction steps,
we can omit the demand point from our further calculations. Note that we are doing the same for demand
points from other regions that are reachable within the response time thresholds; because their coverage is
already taken care of, we omit them in the calculations.

Now take any other random vi with corresponding neighborhood NAQ
i . We assume that all other

demand points in Îi are covered. The purpose of the neighborhood definition is to determine how many
ambulances should be at the virtual base location at i if it should serve all uncovered demand around i.
Because all demand points in Îi are covered, we can omit those demand points; it is not necessary that
ambulance capacity at virtual demand point i provides aid to these demand points. It does not matter
that the ambulances that we assign in i also serve Îi, because the workload condition ensures that the
effective workload of each ambulance is between the minimum and maximum allowed busy fractions for
neighborhood i. Consider the set Ivi = I\Îi, and use the same argument as the first demand point v0.
Now, we can apply the workload condition of Theorem 2 on the singleton Îi to get the guarantee that the
reliability level αi holds. Hence, we can omit i in the next iteration step.

Induction over v gives the guarantee for all demand points.

Proposition 2 is not part of the main text, but will be used in the theorem that follows.

Proposition 2 Increased workload yields at least the same minimal required number of ambulances:

b(ρ) ≤ b(%) if ρ ≤ %.

Proof Because ErlangB(ρ, b) ≥ ErlangB(%, b) for ρ ≤ % and ErlangB(ρ, b) ≥ ErlangB(ρ,B) for b ≤ B
there is a balancing effect between the workload and the required number of vehicles for a stable blocking
probability. Hence

b(ρ) = argminb′∈N{ErlangB(ρ, b′) ≤ 1− α}
≤ argminB′∈N{ErlangB(%,B′) ≤ 1− α} = b(%).

Theorem 5 The required number of ambulances through AQ-PLSCP, being ZAQ, is at most the number of
required ambulances ZQ through Q-PLSCP for constant αi = α over all demand points i ∈ I if the solution
of the IP-formulation respects the workload condition.

Proof The arrival rate for each demand point in AQ-PLSCP is bounded by the arrival rate for the same
demand point in Q-PLSCP:

λAQi =
∑

k∈NAQ
i

fk =
∑
k∈NQ

i
ψk≤ψi

fk ≤
∑

k∈NAQ
i

fk = λQi .

For not-significantly varying service times this means ρAQi ≤ ρQi . Proposition 2 then gives bAQi ≤ bQi .
Because the required number of vehicles on each demand point in AQ-PLSCP is at most the corresponding
number in Q-PLSCP, it means that the IP-formulation yields ZQ ≤ ZAQ. Because the solution of the IP-
formulation respects the workload condition, the post-processor does not have any effect on the outcomes.
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Theorem 6 The AQ-methods are a generalization of the Q-methods.

Proof Take ψi = ψ and αi = α constant for all i ∈ I and assume the isolation assumption. Theorem 3 states
that now the workload condition is satisfied. We have equal neighborhood definitions for every demand point
NAQ
i = NQ

i , because the density values are the same for every demand point i ∈ I.

Corollary 2 Correctness of the Q-methods The ambulance allocation using the Q-methods neighbor-
hood definition, the isolation assumption, and constant reliability level α guarantees a reliability level of at
least α for each demand point i ∈ I that is covered.

Proof Theorem 4 states that all AQ-methods are correct. Theorem 6 states that the Q-models are a special
case of the AQ-methods. Hence, also the Q-methods are correct.

Property 1 Under the assumption that demand, base locations and hospitals are evenly and well spread
between adjacent neighborhoods, we see that the FAQ-methods yield Erlang B input parameters λi, βi
similar to the Q-models for all i ∈ I.

Proof For parameter λi: Because demand is evenly spread between adjacent neighborhoods, we see that
ϕi = fi takes equal values, henceNFAQ

i = NQ
i . Thus λi is similar for all demand points i∈ I. For parameter

βi: When base locations and hospitals are evenly spread between adjacent neighborhoods, Equation 11 yields
similar values β̃i for all i ∈ I. Hence, β̃j and βi are similar for all demand points i∈ I.

Property 2 If a region respects all assumptions of Q-PLSCP, then both Q-PLSCP and FAQ-PLSCP give
exactly the same facility location and allocation solutions if one chooses αi = α constant for all demand
points i ∈ I and uses a post-processor that always stops if the workload condition can be met.

Proof Take any region that respects all assumptions of the Q-models. Q-models use the isolation assumption
that states that demand is evenly and well spread between adjacent neighborhoods. Using Equation 11 we
can say that a constant βi corresponds to base locations and hospitals being evenly and well spread between
adjacent neighborhoods. Use Property 1 to see that λi and βi are similar in both the FAQ-models and the
Q-models for all i ∈ I. By assumption αi = α is constant, hence through identical computations bi gets
the same value for Q-PLSCP and FAQ-PLSCP for all i ∈ I. Now, note that bi is similar valued for all
neighborhoods. In other words, all neighborhoods get the same number of ambulances. Take Ai equal to the
set of all ambulances onMi, that is, all ambulances may serve all demand points in reach. Now Ψ∗,lowi is the
same for all demand points, and Ψ∗,uppi =: Ψ∗,upp is the same for all demand points. Taking Ψduma = Ψ∗,uppi

for all ambulances shows that the workload condition can be met. Because the workload condition can be
met, the post-processor, by assumption, will not add any additional ambulances. Therefore, Q-PLSCP and
FAQ-PLSCP give exactly the same facility location and allocation solutions.


