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Abstract

Dispatchers usually relocate ambulances by the fastest route. However, there are cases
when the fastest relocation is not the best one, as the transitory coverage while driving over
the fastest route can be relatively low. When a fast relocation happens over the highway
with a limited number of exits the ambulance is less flexible, while a longer route through
villages can lead to a higher performance due to transitory coverage. In this paper, we study
the effect of taking alternative routes in ambulance relocations, which is an unaddressed
problem in the literature. Results for four actual ambulance regions show that this so-
called dynamic routing can help at an operational level to obtain a more fair distribution of
ambulance coverage.

1 Introduction

Dynamic ambulance management, DAM, distributes available ambulances over an ambulance
region to minimize late arrivals. When an ambulance finishes a service at a hospital, or when a
dispatch to a new incident occurs, it is generally beneficial to ask available ambulances to drive
to another location than a fixed base location, such that the coverage increases. An ambulance
movement for improved coverage is called a relocation. Relocations may only go to a limited
number of predefined relocation points—often these are base locations.

The DAM models known from literature often start by determining for each ambulance to what
base locations it can be relocated, and consequently, what configuration scores best. After
calculating the optimal configuration, the output for each ambulance from what origin to what
destination it must move; this is called an OD-pair. These models, however, do not specify how
an ambulance should drive to the destination. Usually it is assumed that the ambulances take
the fastest route.

Ambulances in densely populated areas such as the Netherlands are distributed for fairness: no
matter where in the country you are, there must be a reasonable probability that an ambulance
is nearby. Because the performance indicators are aggregated over the year and the entire am-
bulance region, there is an incentive to concentrate ambulances around cities with high demand.
Paper [2] and Ph.D. thesis chapters [1] address this issue and propose facility and allocation
models to increase fairness.

The main contribution of the current chapter is that we focus on the question what route the
ambulance should take to drive to its destination. While an available ambulance is moving to its
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destination, the route choice has an influence on the coverage, and thereby, both on the volume
and the spatial distribution of late arrivals. This so-called dynamic routing can be highly effec-
tive in increasing fairness over an ambulance region, particularly for regions where subareas are
not covered from existing base locations. We show results for three ambulance regions.

A literature review is provided in Section 2. Next, in Section 3, we propose our dynamic routing
model. Results for actual ambulance regions are provided in Section 4. This chapter ends with
a conclusion in Section 5.

2 Literature

Many methods address the issue of how to choose the ambulance movement, see Section ?? for
a literature overview on this topic. We first discuss ways for alternative routing. Directly after,
we give a brief overview of the Dynamic Maximum Expectated Coverage Location Problem
(DMEXCLP) that is used in this chapter.

Generating a routeset, i.e., a set containing route alternatives, in combination with a route choice
model is well studied in the literature. An early review of this topic is given in [19]. Further
extensive literature can be found in [21] and [22].

Various techniques are proposed to deal with uncertainty in travel costs [9, 18, 13]. Stochastic
approaches calculate iteratively each route alternative in two phases. In the first phase, the edge
costs are drawn from a distribution, and in the second phase a shortest path is calculated [11,
7]. Doubly stochastic models are an extension that also randomize the objective function, in the
case it consists of multiple weighted link properties [8, 15]. The labeling approach generates
a routeset for multi-criteria objective by including one route for each of the criteria [6]. Link
elimination alternatively executes two procedures: a shortest path algorithm and a path deletion
algorithm that deletes the characteristic link [20, 4]. A breath-first search can be appended to
link elimination to speed up the process of generating a high diversity of paths [22].

The models mentioned above are designed to find a good fastest route. Our objective, however,
differs because we wish to incorporate the coverage provided by a route.

The route selection problem for hazardous material transports is a relatable problem to ambu-
lance routing, since both involve coverage. Instead of taking routes with the least coverage,
the ambulance context wants us to take a route that generates the most coverage in their objec-
tive function. A known approach is to first define the edge risk for each road segment (that is
the probability that an incident occurs on an edge multiplied by the damage), and thereafter to
calculate a minimal path [23, 12, 3, 24].

There are differences between hazardous materials and real-time ambulance allocation is the
required calculation speed. Whereas hazardous material routes can be calculated weeks in
advance, the ambulance dispatch centers need a faster method that can provide an answer within
seconds. Also, in ambulance care the route choice depends on the locations of other available
ambulances, which is not the case for hazmat transports.

In this paper we use the DMEXCLP model for the calculation of the OD-pairs, and base our
route choice on the MEXCLP model (see [10] for more details). An outline of DMEXCLP
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follows (an extensive description can be found in [14]). The basic idea of DMEXCLP is to
take multiple coverage into account, and consequently, sending an ambulance to the base loca-
tion where its marginal contribution is the highest. To this end, a constant busy fraction q is
introduced, that is the average fraction of the time that an ambulance attends an incident. The
marginal contribution to the coverage of the kth ambulance on demand point i (denoted by ki)
is given by Ci = di(1−q)qki−1. Summation over all demand points yields the total contribution
of an ambulance movement.

3 Model

The DMEXCLP-model from the previous section, or any other DAM-model, provides the ori-
gin O and destination D for ambulance a to send. The goal of our model is to optimize the route
for ambulance a, while taking transitory coverage into account.

The ambulance region is discretized in a set of demand points I (where demand point i has
demand demand di) and base locations J . The set of waypoints, denoted by Y , is the set of
the locations of all road intersections and all locations where a road changes direction—a curve
in the road can be modeled by placing multiple waypoints. Take L := Y ∪I ∪J as the set
containing the waypoints, the demand points, and with the base locations. Denote the minimum
travel time between two points `1, `2 ∈ L by t`1,`2 . The road network is modeled as a directed
complete graph with nodes w ∈ W and the minimum travel times as the edge weights. We
assume that the grid of demand points is dense enough in relation to the travel speeds.

A route is modeled by a finite sequence r = (`0, `1, . . . , `|r|−1) that has taken all its elements
from L. A set of routes is referred to as a routeset, and is denoted byR.

The proposed dynamic routing method consists of two phases. First, we generate a routeset that
contains a fixed number of alternative routes from O to D (see Section 3.1). Subsequent, we
evaluate each of the routes in this routeset individually (see Section 3.2). The ambulance is sent
over the highest valued route alternative.

3.1 Generating routesets

In this section we show how to calculate the routesetR for a given OD-pair. In this context, there
is a trade-off: on the one hand we need enough routes in the routeset to make a good choice,
but on the other hand lead too many routes to unacceptably long calculation times during the
evaluation. Therefore, the limited number of routes must be sufficiently different to cover the
entire area between O and D.

From practice we get two constraints on a route:

1. It should be easy to explain the route in words over the telephone to an ambulance driver,
e.g., a route alternative may not meander through residential areas.

2. EMTs do not accept ‘large detours’ to reach their destination.

3



In any case, we want to evaluate the fastest route between O and D as a route alternative. Hence,
this is the first route that we include in the routeset.

3.1.1 Decision points

We do not follow the approach from most models in the literature that changes the arc properties
for the entire road network in the calculation of a route alternative, as this is too calculation
intensitive. Instead, we introduce decision points on the road network that help us generate
more routes, denoted by v ∈ Z (Z ⊆ Y). Decision points are waypoints that lay on the road
network where a main road splits, and are used as via-points. That is, a route alternative is a
combination of the fastest route from the origin to the decision point, and the fastest route from
the decision point to the destination. A method that calculates the decision points follows in
Section 4. We allow route alternatives to be outside the ambulance region for a limited time.
The (partial) travel time matrix with entries twi is precomputed (w ∈W, i ∈ I).

This satisfies the first constraint: decision points are easy to explain. As an illustration Figure 1
shows the decision points for ambulance region Gooi & Vechtstreek.

The second constraint motivates to take a subset of the decision points between O and D, and
only to consider these decision points as a via-point:

ZO,D := {z ∈ Z : tO,z ≤ tO,D and tz,D ≤ tO,D}. (1)

Figure 2 shows the resulting decision points between Hilversum and Weesp.

Figure 1 The decision points for ambulance region Gooi & Vechtstreek are indicated by black
crosses.
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Figure 2 The decision points between Hilversum (H) and Weesp (W).

3.1.2 Snapping

We apply the so-called snapping to a route alternative. This procedure is designed to prevent
going back and forth over the same path when we create the shortest path through the decision
point by removing paths that we travel over in opposite directions. We limit snapping to S min-
utes: if the original via-point is not reachable by its resulting route alternative, we communicate
the point of snapping in its place.

Figure 3 illustrates snapping. While generating route alternatives between Hilversum (H) and
Weesp (W ), a decision point next to Muiderberg (M) is taken as a pivot. Figure 3a shows the
route alternative without snapping. This route alternative is not acceptable for EMTs because it
(locally) is a large detour: the same road is traveled twice while entering and leaving Muider-
berg. In Figure 3b we applied snapping, and we do not go into Muiderberg, but we still cover
the area because the ambulance drives past it.

Algorithm 1 describes the snapping process. We assume two waypoints on opposite sides of the

W
M

H

(a) Route without snapping.

W
M

H

(b) Route with snapping.

Figure 3 Illustration of snapping on a route from Hilversum (H) to Weesp (W) through Muider-
berg (M).
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Algorithm 1 The snapping algorithm
1: r1← routepart of r from (not incl) O to (not incl) p
2: r2← routepart of r’s inversed route from (not incl) D to (not incl) p
3: for all `1 ∈ r1 do . visit each waypoint `1 on r1 in order
4: for all `2 ∈ r2 do . visit each waypoint on the inversed route in order
5: dsnap← dist(`1, `2). . Euclidean distance in meters
6: if dsnap ≤ ∆ then . points are within the snapping distance threshold
7: if tz1 p ≤ S and tpz2 ≤ S then . pivot p remains covered
8: return append(route(O, `1), route(`1, `2), route(`2,D))
9: end if . the route function gives the fastest route

10: end if
11: end for
12: end for

road if their difference is at most ∆ meter.

3.1.3 Generation algorithm

From hereon we explain the workings of our routeset generation algorithm.

For each decision point in ZO,D we keep track whether there is already a route that visits the
decision point: in the case that any route from the routeset visited a decision point, this decision
point is marked as visited.

After adding the fastest route and marking all the decision points along its way as visited, we
take an unvisited decision point as the pivot p. The next route alternative we consider to add to
the routeset is the fastest route from O via p to D. We mark all decision points on this new route
alternative as visited. For each route alternative r that is already in the routeset, we calculate
the fraction of overlap with the new route. That is, the number of decision points that is both in
the new route and r divided by the total number of decision points that the new route has. If the
fraction of overlap is below a given threshold δ for all routes in the routeset, we consider the
new route to be sufficiently unique. Only then, we add this route to our routeset. We repeat this
process until all decision points in ZO,D are marked visited.

We use a method to speed up routeset generation, which prevents picking multiple decision
points on a road facing outward. Figure 2 illustrates the motivation for the so-called counter-
clockwise pivot picking strategy. If one first takes the route through the green decision point, one
will not reach the red decision point, and thus we have to look at a route through the red decision
point at a later time as well, since it is still unvisited. This route will be very similar to the route
through the green decision point, and we want to avoid similar routes. Thus, by picking the
more outward decision points first, we mark more decision points and prevent looking at too
many similar routes.

The counter-clockwise pivot picking strategy is as follows. We first choose the unvisited de-
cision point with the lowest y-coordinate as our pivot. As the next pivot we take the unvisited
decision point with the highest x-coordinate. Next we take the highest y-coordinate, and at
last, the lowest x-coordinate. Then we look again at the unvisited decision point with the low-
est y-coordinate, and we repeat this procedure until all decision points are visited. Hence, we
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Algorithm 2 Routeset generation
1: calculate ZO,D . use the definition from Equation (1)
2: mark all decision points in ZO,D as not visited
3: calculate route(O, D) . fastest route from O to D
4: mark all decision points on Route(O, D) as visited
5: put route(O, D) in the routesetR
6: repeat
7: p← first unvisited decision point according to the pivot picking strategy
8: PivotRoute← append(route(O, p), route(p,D))
9: mark all decision points on PivotRoute as visited

10: PivotRoute← snapping(PivotRoute) . using Algorithm 1
11: FractionO f Overlap←maxr∈R{|PivotRoute∩ r|/|PivotRoute|}
12: if FractionO f Overlap≤ δ then
13: put PivotRoute in routesetR
14: end if
15: until every demand point in ZO,D is marked as visited
16: returnR

mark the decision points in a counter-clockwise fashion, starting from the outside and working
towards the inside of the ambulance region.

Lower values of δ result in smaller routesets. Figures 4a, 4b and 4c show multiple routesets
that are generated between Hilversum and Weesp for different values of δ . The thickness of the
black line indicates the number of route alternatives that use the road segment.

Algorithm 2 concludes the routeset generation algorithm.

3.2 Route choice model

The previous section provided a routeset R. This section shows how a coverage value can be
assigned to each route alternative. The route alternative with the largest value is advised to the
ambulance.

3.2.1 Outline

Recall that incidents are aggregated to demand points i ∈ I, and the route alternative visits
various waypoints in order, denoted by the sequence r = (O, `1, `2, . . . ,D). These transitional
waypoints are not limited to the origin, the decision points and the destination. All changes
of travel speeds occur at a waypoint. This is, the speed between two neighboring waypoints is
assumed to be constant.

The coverage value of route r can be approximated by adding two terms: (1) the transitional
coverage while being on route,* and (2) the coverage when being at the destination.

*For the first term, that is the contribution to the transitional coverage while being on route, we integrate over
the travel time θ during the route. We split the integral over the entire route into `−1 integrals, one for each road
segment. Next, for each point x(τ) on the route r we calculate the marginal contribution to each demand point i as
defined by function f (·), where tx(θ),i denotes the travel time from the position on the route x(θ) at time θ to i.
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The resulting coverage value of route r is given by the expression:

Ξr = ∑
`∈r
6̀=O

∑
i∈I

∫ t̃`

t̃`−1

f (tx(θ),i)e
−γθ dθ + ∑

i∈I

∫
∞

t̃D
f (tD,i)e−γθ dθ . (2)

Here, the preceding waypoint to ` is denoted by `−1. The travel time from O to v is t̃v. Variable
x(τ) is the position of the ambulance at time τ , that is a linear interpolation in time and space
between ` and `− 1. Discount parameter γ models the fact that uncertainty increases as time
goes on. Value function f (τ) gives the marginal contribution of the relocating ambulance to
the coverage value as a function of the driving time τ . The integral provides a fair comparison
between various routes, because the coverage at the destination weighs heavier if the ambulance
arrives sooner.

3.2.2 The coverage value for the maximum expected coverage location problem

Recall that the marginal coverage function is denoted by f (τ) for travel time τ . Function f
depends on the location of the other ambulances. For MEXCLP we can use the known result

f (τ) = 1{τ≤R}di(1−q)qki−1, (3)

where 1E denotes the indicator function on the event E, q is the average ambulance busy frac-
tion, di is the demand at i, and the relocating ambulance is the ki-th ambulance that can reach i
within time threshold R.

Inspired by literature [14, 5], we fix the locations of all other ambulances A− at their current
position for the ease of calculations. That is, if they are on a main road we teleport them

W

H

(a) δ = 0.1, two routes were added.

W

H

(b) δ = 0.5, four routes were added.

W

H

(c) δ = 0.9, sixteen routes were added.

Figure 4 Routesets between Hilversum (H) and Weesp (W) with different values for δ .
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to the next decision point, and when they are in a residential area we teleport them to the
closest demand point. Using the preprocessed travel time matrix, we can rapidly calculate
ki = 1+∑a∈A− 1{ta,i≤R} the number of ambulances that can reach i within time R, in the case
that the relocating ambulance can be on-time at i (i ∈ I). We compute the contribution if the
relocating ambulance is at most R time units away from i, which is independent of the path
chosen:

Ci = di(1−q)qki−1.

From hereon, we evaluate each route alternative r∈R in the routeset. For waypoints `∈ r on the
main road network we calculate the coverage from the next decision point the ambulance visits,
where we make a correction by subtracting the driving time towards this decision point from the
value function’s argument. For all other waypoints, which are usually waypoints in residential
areas, we calculate the coverage as if the ambulance is at the closest demand point. This is a
good approximation because the demand point aggregation is assumed sufficiently dense. Note
that by this method the coverage calculation from each waypoint is always calculated from an
element inW .

For each pair of demand point i and the route segment preceding `, we compute by linear
interpolation the number of seconds that the ambulance is within R time units from i, while
driving on this route segment. We assume that the travel speed does not change between two
waypoints, which allows us to perform a linear interpolation inside the route segment. Hence,
when substitution Equation (3) in the first term of Equation (2), the summation over all road
segments of the route r gives the following contribution ξr,i to i:

ξr,i = ∑
`∈r
6̀=O

∫ t̃`

t̃`−1

f (tx(θ),i)e
−γθ dθ = ∑

`∈r
6̀=O

∫ t̃`

t̃`−1

1{tx(θ),i≤R}Cie−γθ dθ

= Ci ∑
`∈r
6̀=O

∫ t̃`

t̃`−1

1{tx(θ),i≤R}e
−γθ dθ =Ci ∑

`∈r
6̀=O

∫ t̃`

lb(`−1,`,i)
e−γθ dθ

=
Ci

γ
∑
`∈r
6̀=O

(
e−γ lb(`−1,`,i)− e−γ t̃`

)
.

Here the lower bound lb(`− 1, `, i) is the time on the road segment between `− 1 and ` when
the ambulance driving on this segment becomes within the R time units driving of i. The time
measure starts at the route’s origin. If i cannot be reached in R time units from the entire
segments, we say lb(`−1, `, i) = t`, which results in a zero contribution of this segment. Recall
that the travel speed does not change on a road segment that lays between two waypoints. We
get the following expression for lb:

lb(`−1, `, i) =


t̃` R < t`,i,
t̃`−1 t`−1,i ≤ R and t`,i ≤ R,
t̃`−1 +

R−t`−1,i
t`,i−t`−1,i

(t̃`− t̃`−1) R < t`−1,i and t`,i ≤ R.

Here, we use the assumption that the ambulance has a constant speed between two waypoints.
For the moment of arrival at the destination we get:∫

∞

t̃D
f (tD,i)e−γθ dθ = 1{tD,i≤R}

Ci

γ
e−γ t̃D.
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This gives us the simplified path contribution for the MEXCLP coverage function:

Ξr = ∑ `∈r
6̀=O

∑i∈I

(
Ci
γ

(
e−γ lb(`−1,`,i)− e−γ t̃`

))
+∑i∈I 1{tD,i≤R}

Ci
γ

e−γ t̃D

= 1
γ ∑i∈ICi

((
∑ `∈r
6̀=O

(
e−γ lb(`−1,`,i)− e−γ t̃`

))
+1{tD,i≤R}e−γ t̃D

)
.

4 Results

In this section we show simulation results for the ambulance regions Gooi & Vechtstreek,
Amsterdam-Waterland, and Utrecht. We compare the fastest route to the best route generated
by the MEXCLP dynamic routing policy. As key performance indicators we use the fraction of
late arrivals and the mean response time. In both policies we use DMEXCLP for the calculation
of the OD-pair.

4.0.1 Setup

We use a so-called trace-driven simulation strategy for the months September and October
2015. In these months there are no major holidays. In a trace-driven simulation we simulate
incidents at exact same time and place as they occurred in reality. The only difference is the
way we relocate the ambulances.

A hexagonal equidistant demand point grid is used, such that there is a 1 kilometer distance
between the grid points. Demand patterns are calculated from one year historical data. We
use δ = 0.5, q = 0.3 and γ = 1/(λM) the expected inter-arrival time for a particular ambu-
lance. Here, M is the number of ambulances in the region. The Open Source Routing Machine
(OSRM) [16] is used for navigation—this software is constructed such that the speed does not
change between two waypoints.

From OpenStreetMap (OSM) [17], we create the set of decision points on the major road net-
work Z . These decisions points are identified in OSM as the nodes that lay on a way with
highway tag highway, trunk or primary (and their resp. links) that either intersect with another
road type or are included in at least three ways. In the Netherlands this results in 49,887 decision
points. The choice of including primary but not secondary roads is made because it is generally
not hard to turn roads of type secondary or lower. We assume that ambulances pass the follow-
ing decision point when being dispatched to an incident. For each region, we truncate the set
Z to demand points that are either in the region, or are less than 30 km away from any point in
the region. The choice is based such that all demand points of the region are unreachable in 12
minutes driving when not exceeding 150 km/h. This significantly reduces the set Z .

Table 1 shows the simulation results for the fastest route and dynamic routing policies. In the
remainder of this section we consider each of the three ambulance regions separately.
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Fastest route Dynamic routing
Fraction of Mean response Fraction of Mean response

late arrivals (%) time (min:sec) late arrivals (%) time (min:sec)
Gooi & Vechtstreek 15.03 11:23 15.87 11:28
Amsterdam-Waterland 0.69 7:50 0.67 7:38
Utrecht 7.03 9:32 7.15 9:28

Table 1 Simulation results for the three regions.

4.1 Gooi & Vechtstreek

The EMS region Gooi & Vechtstreek is the smallest in the Netherlands, both in size and number
of calls. It is a rural area with a population just over 250,000. Most people live in the north
and the east of the region. The south-west mainly consists of lakes and forests. Yearly, there
are over 18,000 incidents. There are three base locations, situated in Hilversum, Blaricum and
Weesp. Figure 5 shows a map of the region with its base locations and call volume distribution.

Table 1 shows that there is a small increase in the mean response time. To get a better under-
standing of where and when we get the most improvement, we look at Figure 6. Nodes are
colored green if the dynamic routing method outperforms the fastest route policy, that is where
dynamic routing has less late arrivals. A red node indicates that dynamic routing method per-
forms worse. Deeper analysis gave the insight that the high percentage of late arrivals is due
to a shortage of ambulances in the evening, especially in the weekends. At that time there are
barely enough ambulances available to handle the incoming calls.

Figures 6 and 8 show that the most improvement is in Wijdemeren, the municipality in the
south-west corner of the region. This comes at the cost of more late arrivals in the municipality
Gooise Meren, which is located in the north. Dynamic routing thus moves the location of late
arrivals to more rural areas, since we now take the highway through Gooise Meren less and
instead drive through Wijdemeren.

Because the region is understaffed in the evening, we are interested if our method performs
better or worse in the evening compared to the rest of the day. Figure 7 shows the late arrivals
in the evening compared to the rest of the day. Here the evening is from 16:00 to midnight.

We observe that dynamic routing performs significantly worse in the evening compared to the
rest of the day. Sometimes there is a shortage in the number of available ambulances during the
evening, which might be the reason that dynamic routing performs worse. The results might
improve if we make the discount parameter γ and the busy fraction q time dependent.

If we focus on the per-municipality statistics, we see a shift in the number of late arrivals. Since
there is a relatively low call volume in Wijdemeren, any extra on-time arrival results in a larger
relative improvement compared to the

more densely populated areas that have a high call volume. Figure 8 shows this relative im-
provement.

There is a relative improvement in Wijdemeren and Huizen, while dynamic routing performs
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worse in Weesp. Note that both Wijdemeren and Huizen do not have a base location. Wijde-
meren normally has the lowest percentage on time arrivals. Dynamic routing redistributes the
late arrivals so the percentage late arrivals of each municipality gets closer together.

4.2 Amsterdam-Waterland

Amsterdam-Waterland has a higher call volume than any other ambulance region in the Nether-
lands, as it counts 121,000 incidents a year. Fraction 68% of its 1.30 million inhabitants live
in the city Amsterdam. This region is densely populated compared to Gooi & Vechtstreek.
Figure 9a shows the region, its base locations and distribution of demand.

Figure 9b shows the difference in the number of late arrivals for both policies, where a green
node indicates more on-time arrivals for the dynamic routing policy.

Recall that Table 1 shows that the late arrivals in the ambulance region stay about the same,
but the mean response time decreases when we use dynamic routing. This is mainly because
dynamic routing has the largest improvement in Amsterdam Zuid-Oost (south-east Amsterdam),
shown in Figure 9b. This comes at the expense of the semi-rural areas outside of the city
Amsterdam that get more late arrivals, especially at Volendam. Observe that Amsterdam Zuid-
Oost does not have a base location for ambulances. Thus dynamic routing sends an ambulance
over Amsterdam Zuid-Oost to increase coverage over that part of the region. Nowadays, there
is a base located in Amsterdam Zuid-Oost.

This illustrates that dynamic routing can be used to cover an area where one would want a base
location, and might even be used to search for appropriate base locations.

Figure 5 The blue area is the EMS region Gooi & Vechtstreek. The three base locations are
indicated by black dots. Darker shades of blue correspond to a higher call volume.
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Figure 6 Comparison of the number of late arrivals in Gooi & Vechtstreek. Green areas show
improvement with dynamic routing, in contrast to reds. The black dots indicate the base loca-
tions.

4.3 Utrecht

Utrecht is a densely populated area with approximately 1.27 million inhabitants. It is amongst
the largest EMS regions in the Netherlands. The ambulance provider handles over 90,000 in-
cidents each year. The region and its base locations are shown in Figure 10. We compare both
methods similar to the analysis for Gooi & Vechtstreek and Amsterdam-Waterland.

Recall that Table 1 shows a slight increase in the number of late arrivals for the dynamic rout-
ing policy. In Figure 11 we see that the most decrease happens in the cities Amersfoort and

(a) Evening. (b) Rest of the day.

Figure 7 Comparison of the number of late arrivals for different times of the day for workdays.
Green areas are improved with dynamic routing, in contrast to reds.
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Figure 8 The relative improvement in late arrivals for Gooi & Vechtstreek. Green municipalities
show improvement with dynamic routing, in contrast to reds. The black dots indicate the base
locations.

Veenendaal. There is a small decrease in the mean response time as well. This can be because
the ambulances respond quicker to incidents farther away from base locations when we use

(a) Darker shades of blue correspond to a higher
call volume.

(b) The number of late arrivals. Green areas show
improvement with dynamic routing, in contrast to
reds.

Figure 9 Comparisons for the EMS region Amsterdam-Waterland. The base locations are indi-
cated by black dots.
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dynamic routing. The mean response time for this ambulance region is slightly faster.

The most improvement is gained in semi-rural areas with no base location. Especially in Lopik
in the south-west and Eemnes in the north-east we see a large increase of on-time arrivals. This
is because dynamic routing relocates ambulances through these regions. However, there is a
lower performance in the other corners of Utrecht. In both in the north-west and the south-
east dynamic routing is outperformed by the fastest route policy. Both these regions have base
locations, as opposed to Lopik and Eemnes. Thus because of dynamic routing, the ambulances
arrive later at the base locations in these corners of the region, which results in more late arrivals.
Hence, we see a redistribution of the late arrivals over the region, where the areas with a lower
percentage on time arrivals improve.

Since we have the most improvement in more thinly populated areas, we are interested in the
relative improvement of the region. Figure 12 shows the relative improvement for each munic-
ipality in Utrecht.

5 Conclusion

Classically ambulances are relocated to a base location using the fastest route. In this chapter
we proposed a so-called dynamic routing policy that looks for the best relocation route instead.
Simulation results increase the fairness of the ambulance region, while keeping the fraction of
late arrivals over the entire ambulance region stable.

Simulations provide interesting additional insights.

First, in the ambulance regions Gooi & Vechtstreek and Utrecht dynamic routing gives more

Figure 10 The blue area is the EMS region Utrecht. The base locations are indicated by black
dots. Darker shades of blue correspond to a higher call volume.
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Figure 11 Comparison of the number of late arrivals in Utrecht. Green areas show improvement
with dynamic routing, in contrast to reds. The base locations are indicated by black dots.

on-time arrivals in rural areas, at a relatively small cost in the larger cities. The large relative
improvement in the urban areas and areas with no base locations shows that dynamic routing
ensures a more even distribution of the ambulances.

Second, Amsterdam-Waterland shows that dynamic routing can be used to compensate for sub-
optimal locations of ambulance bases. Dynamic routing contributes the most in Amsterdam
Zuid-Oost in regards to the number of late ambulance arrivals. This can be explained by a
densely populated area without any base location. We note, however, that at the time of writing

L

E

A

V

Figure 12 Comparison of the number of late arrivals in Utrecht. Green municipalities show
improvement with dynamic routing, in contrast to reds. The base locations are indicated by
black dots. Marked are Lopik (L), Eemnes (E), Amersfoort (A) and Veenendaal (V).
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a new base location in Zuid-Oost is installed.

Third, an interesting topic for further research is to investigate the effect of the discount pa-
rameter γ which reduces the ambulance’s contribution on the overall coverage value as time
passes. Possibly, there is too much emphasis on the beginning of the route, which is the result
of a high choice for the discount parameter. This can lead to ambulances arriving later at their
destination, and potentially to unnecessary late arrivals.

Last, it is possible to restrict dynamic routing when certain restrictions are satisfied, i.e., we can
only consider dynamic routing during certain times of the day. Further research is needed on
the effects of such limitations.
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